Selected publications: downloadable versions
●
Várhegyi,
G. Can varying activation energy be determined reliably from thermogravimetric
experiments? J. Therm. Anal. Calorim. 2024,
149, 7367-7378. Open access. doi:
https://doi.org/10.1007/s10973-024-13261-x Supplementary
info to this work on the publisher’s website : Supplementary
file 1, Supplementary
file 2, Supplementary
file 3.
A
copy of the publication on this website: 2024_Can_varying_E_be_determined.pdf
Supporting information: 2024_Can_varying_E_be--Supplementary_files.zip
●
G.
Várhegyi. Problems with the determination of activation energy as function of
the reacted fraction from thermoanalytical experiments. J. Therm. Anal.
Calorim. 2023, 148, 12835-12843. Open
access. doi: 10.1007/s10973-023-12559-6
Supplementary
Information
A copy of this publication on this website: 2023_E(alpha)_compensation_effects.pdf
Supporting information: 2023_Supplementary_material_to_E(alpha)_compensation_effects.zip
●
Várhegyi,
G.; Wang, L.; Skreiberg, Ø. Kinetics of the CO2 gasification of
woods, torrefied woods, and wood chars. Least squares evaluations by empirical
models. J. Therm. Anal. Calorim. 2023, 148, 6439-6450. Open
access. doi: 10.1007/s10973-023-12151-y
Supplementary
Information
A copy of this publication on this website: 2023_CO2_gasification_torrefied_woods.pdf
Supporting information: 2023_Supplementary_info_to_CO2_gasification.pdf
●
Várhegyi,
G.; Wang, L.; Skreiberg, Ø. Empirical kinetic models for the CO2 gasification
of biomass chars. Part 1. Gasification of wood chars and forest residue
chars. ACS Omega 2021, 6, 27552-27560. Open
access. doi: 10.1021/acsomega.1c04577 Supporting
Information
A copy of this publication on this website: 2021_Char+CO2_empirical_models.pdf
Supporting information: 2021_Supporting_info_to_Char+CO2.pdf
●
Várhegyi,
G.; Wang, L.; Skreiberg, Ø. Empirical kinetic models for the combustion of
charcoals and biomasses in the kinetic regime. Energy Fuels 2020,
34, 16302-16309. Open access.
doi: 10.1007/s10973-019-09162-z
A copy of this publication on this website: 2020_Biomass_char+O2_empirical_models.pdf
Supporting information: 2020_Supporting_info_to_Biomass_char+O2.pdf
●
Várhegyi,
G.; Wang, L.; Skreiberg, Ø. Non-isothermal kinetics: best-fitting empirical
models instead of model-free methods. J Therm Anal Calorim 2020,
142, 1043-1054. Open access. doi: 10.1007/s10973-019-09162-z
A copy of this publication on this website: 2020_Best-fitting_empirical_models.pdf
Supporting information: 2020_Supplement_to_Best-fitting_empirical_models.pdf
●
Várhegyi,
G. Empirical models with constant and variable activation energy for biomass
pyrolysis. Energy Fuels 2019, 33, 2348-2358. Open
access. doi: 10.1021/acs.energyfuels.9b00040
On this website: 2019_Empirical_models_for_biomass_pyrolysis.pdf
Supporting information: 2019_Supporting_info_Empirical_models_for_biomass_pyrolysis.pdf
●
Wang,
L.; Li, T.; Várhegyi, G.; Skreiberg, Ø.; Løvås, T. CO2 Gasification
of chars prepared by fast and slow pyrolysis from wood and forest residue. A
kinetic study. Energy Fuels 2018, 32, 588-597. doi: 10.1021/acs.energyfuels.7b03333
Manuscript: 2018_Char+CO2_kinetics.pdf
●
Várhegyi,
G.; Wang, L.; Skreiberg, Ø. Towards a meaningful non-isothermal kinetics for
biomass materials and other complex organic samples J. Therm. Anal.
Calorim. 2018, 133, 703-712. doi: 10.1007/s10973-017-6893-0
Manuscript: 2018_Towards_meaningful_non-isothermal_kinetics.pdf
●
Barta-Rajnai,
E.; Várhegyi, G.; Wang, L.; Skreiberg, Ø.; Grønli, M.;
Czégény, Zs. Thermal decomposition kinetics of wood and bark and
their torrefied products. Energy Fuels 2017, 31,
4024-4034. doi: 10.1021/acs.energyfuels.6b03419
Manuscript: 2017_Kinetics_wood_bark_torrefied_products.pdf
Supporting information: 2017_Supporting_info_Kinetics_wood_bark_torrefied_products.pdf
●
Várhegyi,
G.: In Honor of Michael J. Antal. Energy Fuels 2016, 30,
7809-7810. doi: 10.1021/acs.energyfuels.6b02476
Manuscript: 2016_In_honor_of_Michael_J_Antal.pdf
●
Várhegyi,
G.: From “sirups” to biocarbons. A 30 year cooperation research for better
biomass utilization with Michael J. Antal, Jr. Energy Fuels 2016,
30, 7887-7895. doi: 10.1021/acs.energyfuels.6b00860
Manuscript: 2016_30-years_for_better_biomass_utilization.pdf
Lecture version: 2016_lecture_30years_kinetics.pdf
●
Wang,
L.; Várhegyi, G.; Skreiberg, Ø.; Li, T.; Grønli, M.; Antal, M. J.: Combustion
characteristics of biomass charcoals produced at different carbonization
conditions. A kinetic study. Energy Fuels 2016, 30, 3186-3197. doi: 10.1021/acs.energyfuels.6b00354
Manuscript: 2016_Combustion_characteristics_biomass_charcoals.pdf
Supporting info: 2016_Combustion_characteristics_biomass_charcoals_Supporting_Information.pdf
●
Wang,
L.; Várhegyi, G.; Skreiberg, Ø.: CO2 Gasification of torrefied
wood. A kinetic study. Energy Fuels 2014, 28,
7582-7590. doi: 10.1021/ef502308e
Manuscript: 2014_Torrefied_wood+CO2.pdf
Supporting info: 2014_Torrefied_wood+CO2_Supporting_Information.pdf
●
Tapasvi,
D.; Khalil, R.; Várhegyi, G.; Tran, K.-Q.; Grønli, M.; Skreiberg, Ø.: Thermal
decomposition kinetics of woods with an emphasis on torrefaction. Energy
Fuels 2013, 27, 6134-6145. doi: 10.1021/ef4016075
Manuscript: 2013_Thermal_decomposition_kinetics_of_woods__Torrefaction.pdf
●
Wang,
L.; Sandquist, J.; Várhegyi, G.; Matas Güell, B.: CO2 Gasification
of Chars Prepared from Wood and Forest Residue. A Kinetic Study. Energy
Fuels 2013, 27, 6098-6107. doi: 10.1021/ef401118f
Manuscript: 2013_CO2_gasification_of_chars_from_wood_and_forest_residue.pdf
●
Tapasvi,
D.; Khalil, R.; Várhegyi, G.; Skreiberg, Ø.; Tran, K.-Q.; Grønli, M.: Kinetic
behavior of torrefied biomass in an oxidative environment. Energy
Fuels 2013, 27, 1050-1060. doi: 10.1021/ef3019222
Manuscript: 2013_Torrefied_biomass+O2.pdf
Supporting info: 2013_Torrefied_biomass+O2_Supporting_Information.pdf
●
Trninić,
M.; Wang, L.; Várhegyi, G.; Grønli, M.; Skreiberg, Ø.: Kinetics of corncob
pyrolysis. Energy Fuels 2012, 26,
2005-2013. doi: 10.1021/ef3002668
Manuscript: 2012_Kinetics_of_corncob_pyrolysis.pdf
●
Várhegyi,
G.; Sebestyén, Z.; Czégény, Z.; Lezsovits, F.; Könczöl, S.: Combustion
kinetics of biomass materials in the kinetic regime. Energy Fuels 2012,
26, 1323-1335. doi: 10.1021/ef201497k
Manuscript: 2012_Combustion_kinetics_of_biomass_materials.pdf
Supporting info: 2012_Combustion_kinetics_Supporting_Information.pdf
●
Várhegyi,
G.; Bobály, B.; Jakab, E.; Chen, H.: Thermogravimetric study of biomass
pyrolysis kinetics. A distributed activation energy model with prediction
tests. Energy Fuels 2011, 25, 24-32. doi: 10.1021/ef101079r
Manuscript: 2011_TGA_study_of_biomass_pyrolysis_kinetics__DAEM_with_prediction_tests.pdf
Supporting info: 2011_TGA_study_of_biomass_pyrolysis_kinetics__Supporting_Information.pdf
●
Várhegyi,
G.; Czégény, Zs.; Liu, C.; McAdam, K.: Thermogravimetric analysis of tobacco
combustion assuming DAEM devolatilization and empirical char-burnoff kinetics.
Ind. Eng. Chem. Res. 2010, 49, 1591-1599. doi:
10.1021/ie901180d
Manuscript: 2010_TGA_study_of_tobacco_combustion_assuming_DAEM_devolatilization.pdf
Supporting info: 2010_TGA_study_of_tobacco_combustion_Supporting_Information.pdf
●
Várhegyi,
G.; Chen, H.; Godoy, S.: Thermal decomposition of wheat, oat, barley and Brassica
carinata straws. A kinetic study. Energy Fuels 2009,
23, 646-652. doi: 10.1021/ef800868k
Manuscript: 2009_TGA_Kinetics_of_Straws.pdf
Supporing info: 2009_TGA_Kinetics_of_Straws_Supporting_Information.pdf
●
Khalil,
R.; Várhegyi, G.; Jäschke, S.; Grønli, M. G.; Hustad, J.: CO2
gasification of biomass chars. A kinetic study. Energy Fuels 2009,
23, 94-100. doi: 10.1021/ef800739m
Manuscript: 2009_CO2_gasification_of_biomass_chars__A_kinetic_study.pdf
●
Várhegyi,
G.; Czégény, Zs.; Jakab, E.; McAdam, K.; Liu, C.: Tobacco pyrolysis. Kinetic
evaluation of thermogravimetric – mass spectrometric experiments. J. Anal.
Appl. Pyrolysis 2009, 86, 310-322. doi: 10.1016/j.jaap.2009.08.008
Manuscript: 2009_Tobacco_pyrolysis__Kinetic_evaluation_of_TG-MS_experiments.pdf
Supplementary content: 2009_Tobacco_pyrolysis__Supplementary_Content.pdf
●
Wu,
M.; Várhegyi, G.; Zha Q.: Kinetics of cellulose pyrolysis after a pressurized
heat treatment. Thermochim. Acta 2009, 496,
59-65. doi: 10.1016/j.tca.2009.06.024
Manuscript: 2009_Kinetics_of_cellulose_pyrolysis_after_pressurized_heat_treatment.pdf
●
Becidan,
M.; Várhegyi, G.; Hustad, J. E.; Skreiberg, Ø.: Thermal decomposition of
biomass wastes. A kinetic study. Ind. Eng. Chem. Res. 2007,
46, 2428-2437. doi: 10.1021/ie061468z
Manuscript: 2007_Thermal_decomposition_of_biomass_wastes__A_kinetic_study.pdf
●
Várhegyi,
G.: Aims and methods in non-isothermal reaction kinetics. J. Anal. Appl.
Pyrolysis 2007, 79, 278-288. doi: 10.1016/j.jaap.2007.01.007
Manuscript: 2007_Aims_and_methods_in_non-isothermal_reaction_kinetics.pdf
●
Várhegyi,
G.; Mészáros, E.; Antal, M. J., Jr.; Bourke, J.; Jakab, E.: Combustion
kinetics of corncob charcoal and partially demineralized corncob charcoal in
the kinetic regime. Ind. Eng. Chem. Res. 2006, 45, 4962-4970.
doi: 10.1021/ie0602411
https://real.mtak.hu/21611/
Manuscript: 2006_Kinetics_of_charcoal_combustion.pdf
●
Mészáros,
E.; Várhegyi, G.; Jakab, E.; Marosvölgyi, B.: Thermogravimetric and reaction
kinetic analysis of biomass samples from an energy plantation. Energy Fuels
2004, 18, 497-507. doi: 10.1021/ef034030%2B https://real.mtak.hu/8896/
Manuscript: 2004_TGA_kinetics_of_energy_plantation_products.pdf
●
Várhegyi,
G.; Grønli, M. G.; Di Blasi, C.: Effects of sample origin, extraction and hot
water washing on the devolatilization kinetics of chestnut wood. Ind. Eng.
Chem. Res. 2004, 43, 2356-2367. doi: 10.1021/ie034168f https://real.mtak.hu/21620/
Manuscript: 2004_Effects_of_extraction_and_hot_water_washing_on_devolatilization_kinetics_of_chestnut_wood.pdf
●
Várhegyi,
G.; Szabó, P.; Antal, M. J., Jr.: Kinetics of charcoal devolatilization. Energy
Fuels 2002, 16, 724-731. doi: 10.1021/ef010227v https://real.mtak.hu/21609/
Manuscript: 2002_Kinetics_of_charcoal_devolatilization.pdf
●
Tam,
M. S.; Antal, M. J., Jr.; Jakab, E.;
Várhegyi, G.: Activated carbon from macadamia nut shell by air
oxidation in boiling water. Ind. Eng. Chem. Res. 2001, 40,
578-588. doi: 10.1021/ie000461t
Manuscript:
●
Várhegyi,
G.; Szabó, P.; Jakab, E.; Till, F.: Least squares criteria for the kinetic
evaluation of thermoanalytical experiments. Examples from a char reactivity
study. J. Anal. Appl. Pyrolysis 2001, 57, 203-222. doi:
10.1016/S0165-2370(00)00113-3
https://real.mtak.hu/21817/
Manuscript: 2001_Least_squares_criteria_for_kinetic_evaluation_of_thermoanalytical_experiments.pdf
●
Várhegyi,
G.; Till, F.: Comparison of temperature programmed char combustion in CO2
- O2 and Ar - O2 mixtures at elevated pressure. Energy
Fuels 1999, 13, 539-540. doi: 10.1021/ef980159l https://real.mtak.hu/21606/
Manuscript: 1999_Study_of_char_combustion_by_high_pressure_TGA.pdf
●
Grønli,
M.; Antal, M. J., Jr.; Várhegyi, G.: A
round-robin study of cellulose pyrolysis kinetics by thermogravimetry. Ind.
Eng. Chem. Res. 1999, 38, 2238-2244.
doi: 10.1021/ie980601n
https://real.mtak.hu/21677/
Manuscript: 1999_Round-robin_study_of_cellulose_pyrolysis_kinetics.pdf
●
Várhegyi,
G.; Till, F.: Computer processing of thermogravimetric - mass spectrometric
and high pressure thermogravimetric data. Part 1. Smoothing and
differentiation. Thermochim. Acta 1999, 329,
141-145. doi: 10.1016/S0040-6031(99)00041-6
https://real.mtak.hu/21819/
Manuscript: 1999_Smoothing_and_differentiation_for_TGA_and_TGA-MS.pdf
●
Várhegyi, G.; Szabó, P.; Till, F.; Zelei, B.; Antal, M.
J., Jr.; Dai X.: TG, TG-MS and FTIR characterization of high-yield biomass
charcoals. Energy Fuels 1998, 12,
969-974. doi: 10.1021/ef9800359https://real.mtak.hu/21607/
Manuscript: 1998_TG-MS_study_of_biomass_charcoals.pdf
●
Antal,
M. J., Jr.; Várhegyi, G.; Jakab, E.: Cellulose pyrolysis kinetics:
Revisited. Ind. Eng. Chem. Res. 1998, 37 1267-1275. doi: 10.1021/ie970144v https://real.mtak.hu/21646/
Manuscript: 1998_Cellulose_pyrolysis_kinetics_revisited.pdf
●
Antal,
M. J., Jr.; Várhegyi, G.: Impact of systematic errors on the determination of
cellulose pyrolysis kinetics. Energy Fuels 1997, 11,
1309-1310. doi: 10.1021/ef970030whttps://real.mtak.hu/21641/
Manuscript: 1997_Systematic_errors_and_cellulose_pyrolysis_kinetics.pdf
●
Várhegyi,
G.; Antal, M. J., Jr.; Jakab, E. , Szabó, P.: Kinetic modeling of biomass
pyrolysis. J. Anal. Appl. Pyrolysis 1997, 42, 73-87. doi:
10.1016/S0165-2370(96)00971-0https://real.mtak.hu/21688/
Manuscript: 1997_Biomass_pyrolysis_kinetics.pdf
●
Várhegyi,
G.; Szabó, P.; Jakab, E.; Till, F.; Richard J-R.: Mathematical modeling of
char reactivity in Ar-O2 and CO2-O2 mixtures.
Energy Fuels 1996, 10, 1208-1214. doi: 10.1021/ef950252zhttps://real.mtak.hu/21604/
Manuscript: 1996_Char_combustion_kinetics.pdf
●
Várhegyi,
G.; Antal, M. J., Jr.; Szabó, P.; Jakab, E.; Till, F.: Application of complex
reaction kinetic models in thermal analysis. The least squares evaluation of
series of experiments. J. Thermal Anal. 1996, 47,
535-542. doi: 10.1007/BF01983995https://real.mtak.hu/21807/
Manuscript: 1996_Complex_kinetic_models_in_thermal_analysis.pdf
●
Várhegyi,
G.; Szabó, P.; Antal, M. J., Jr.: Reaction kinetics of the thermal
decomposition of cellulose and hemicellulose in biomass materials. In Advances
in Thermochemical Biomass Conversion (Ed. by A. V. Bridgwater), Volume 2,
Blackie Academic and Professional, London, pp. 760-771, 1994, doi:
10.1007/978-94-011-1336-6_59https://real.mtak.hu/22240/
Manuscript: 1994_Kinetics_of_thermal_decomposition_in_biomass.pdf
●
Várhegyi,
G.; Szabó, P.; Antal, M. J., Jr.: Kinetics of the thermal decomposition of
cellulose under the experimental conditions of thermal analysis. Theoretical
extrapolations to high heating rates. Biomass Bioenergy 1994, 7,
69-74. doi: 10.1016/0961-9534(95)92631-Hhttps://real.mtak.hu/22239/
Manuscript: 1994_Cellulose_kinetics_with_extrapolations.pdf
●
Várhegyi,
G.; Jakab, E.; Antal, M. J., Jr.: Is the Broido - Shafizadeh model for
cellulose pyrolysis true? Energy Fuels 1994, 8,
1345-1352. doi: 10.1021/ef00048a025https://real.mtak.hu/21779/
Manuscript: 1994_Broido-type_kinetics_for_cellulose.pdf
● Várhegyi,
G.; Szabó, P.; Mok, W. S. L.; Antal, M. J., Jr.: Kinetics of the thermal
decomposition of cellulose in sealed vessels at elevated pressures. Effects of
the presence of water on the reaction mechanism. J. Anal. Appl. Pyrolysis
1993, 26, 159-174. doi: 10.1016/0165-2370(93)80064-7https://real.mtak.hu/21700/
Manuscript: 1993_Cellulose_at_eleveted_pressure__kinetics.pdf
Further downloadable info: a complete list of the independent citations to our works as extracted from the Hungarian National Scientific Bibliography (MTMT) at 9 January 2018 (html, pdf).