Supporting Information for Article

Empirical Kinetic Models for the CO₂ Gasification of Biomass Chars. Part 1. Gasification of Wood Chars and Forest Residue Chars

Gábor Várhegyi^{†,*} • Liang Wang[‡] • Øyvind Skreiberg[‡]

⁺Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, PO Box 286, Budapest, Hungary 1519

* corresponding author, email: varhegyi.gabor@ttk.hu or gvarhegyi@gmail.com

^{*±*}SINTEF Energy Research, Postboks 4761 Torgarden, NO-7465 Trondheim, Norway

Keywords: Least Squares • Kinetics • Non-isothermal • Charcoal • Biomass • Wood.

Scope of this Document: Models are presented for the CO_2 gasification of 6 charcoals. The performance of the models was tested by the reevaluation of TGA experiments belonging to earlier publications. Besides, a brief explanation is given on the parameter transformations that facilitate the least squares evaluations.

Contents

1.	Simple parameter transformations to facilitate the least squares evaluations	.S2
2.	Gasification of wood and forest residue chars at two CO ₂ concentrations	.S5
4.	Gasification of chars from slow and fast pyrolysis	.S8

1. Simple parameter transformations to facilitate the least squares evaluations

1.1. The kinetic model. First the employed empirical model is summarized here for the convenience of the reader. The kinetic differential equation has the form

$$dX/dt = A f(X) e^{-E/(RT)}$$
(S1)

where X is the reacted fraction (conversion) and Af(X) is an empirical function. Obviously Af(X) can be factorized to an A and an f(X) in endless ways. In the present work we normalized f(X) so that its height is 1 at X=0. The A values listed in this document were calculated by this assumption.

Af(X) is approximated by using a polynomial as follows:

$$Af(X) = e^{p(X)} (1-X)$$
 (S2)

where the term (1-X) ensures that dX/dt would be 0 when X=1 for any p(X) polynomial.

In this way eq S1 has the form

$$dX/dt = e^{p(X) - E/(RT)} (1-X)$$
(S3)

1.2 Simple parameter transformations. Fifth order polynomials were used in the present work. Their coefficients were determined by optimizing the fit between the experimental and measured data. *X* varies between 0 and 1. In this interval the higher powers of *X* are rather similar to each other, and their coefficients can highly compensate each other. This cause severe technical problems during the determination of the corresponding polynomial coefficients. The problem can easily be mitigated by transforming the X values into the [-1,1] interval:

$$x=2X-1$$
 (S4)

The situation is illustrated by Figure S1 that shows the powers of x. The higher powers are similar to each other in the [0,1] interval. For example, x^4 can be approximated well by a linear combination of x^3 and x^5 when $0 \le x \le 1$. (See the orange-colored dots in Figure S1.) This is not so when x < 0 because x^3 and x^5 are negative while x^4 is positive at x < 0. With this transformation p has the form

$$p(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + a_5 x^5$$
(S5)

The $a_0 \dots a_5$ coefficients can be determined by the method of least squares. The interdependence of the polynomial coefficients can be further decreased if p(x) is expressed by Chebyshev polynomials of the first kind, because these polynomials differ very much from each other. (See Figure S2 below). Accordingly, p(x) can be rewritten as

$$p(x) = b_0 + b_1 T_1(x) + b_2 T_2(x) + b_3 T_3(x) + b_4 T_4(x) + b_5 T_5(x)$$
(S6)

Using eq S6, a change of coefficient b_4 , for example, are never compensated by the change of the other b coefficients during the numerical minimization of the least squares sum.

Figure S1. The powers of x in interval [-1,1]. The orange-colored dots illustrate a "compensation effect" (interdependence): a linear combination of x^3 and x^5 can approximate well x^4 when $0 \le x \le 1$. This interdependence was mitigated by transforming replacing X by x in the evaluations.

Figure S2. Chebyshev polynomials of the first kind in interval $-1 \le x \le 1$.

1.3. There is no need to transform back the obtained p(x) polynomials into p(X). A p(x) expressed by eq S6 can as easily be used for any practical purpose. The values of the Chebyshev polynomials for eq S6 can easily be calculated by the well-known recurrence formula:

$$T_0 = 1$$
 (S7)

 $T_1 = x$
 (S8)

 $T_2 = 2xT_1 - T_0$
 (S9)

 ...
 (S9)

$$T_{n} = 2xT_{n-1} - T_{n-2}$$
(S10)

Nevertheless, we presented the results both in the form of eq S5 and eq S6 in the present document. The formulas to convert a p(x) from eq S6 to eq S5 can be found in the literature or can be deduced easily. However, we did not transform back the p(x) polynomials to a series of the powers of X because a p(X) polynomial does not have any advantage over a p(x) polynomial.

2. Gasification of wood and forest residue chars at two CO₂ concentrations

The experiments belong to this work:

Wang, L.; Sandquist, J.; Várhegyi, G.; Matas Güell, B.: CO₂ Gasification of Chars Prepared from Wood and Forest Residue. A Kinetic Study. *Energy Fuels* **2013**, *27*, 6098-6107. *doi*: <u>10.1021/ef401118f</u> <u>Repository</u>

The experiments were carried out at C_{CO_2} =0.6 and C_{CO_2} =1, where C_{CO_2} is the volume concentration of CO₂. Three heating programs were employed: 10°C/min, modulated T(t) and constant reaction rate T(t) (CRR). Figure 1 of the present article illustrates the fit quality belonging to the model data presented below. The corresponding f(X) functions are shown by solid lines in Figure 2 of the article.

Evaluation 1.2 (regular evaluation based on 12 experiments) E=220

(i) Wood char

 $p(x) = a_0 + 0.6640x + 0.1397x^2 - 0.4879x^3 + 0.3938x^4 + 0.9513x^5$ Expressed by Chebyshev polynomials of the first kind: $p(x) = b_0 + 0.8927T_1(x) + 0.2667T_2(x) + 0.1753T_3(x) + 0.0492T_4(x) + 0.0595T_5(x)$

C_{CO₂}=0.6:

a ₀ =16.7033	bo=16.9208	
log10A= 6.9962	ln A=16.1093	A= 9.9128E+06
<i>C_{c0₂}</i> =1:		
a ₀ =17.2280	bo=17.4455	
log10A= 7.2241	ln A=16.6340	A= 1.6752E+07

(ii) Forest residue char

 $p(x) = a_0 + 0.5021x + 0.3342x^2 - 0.0775x^3 + 0.1628x^4 + 0.5100x^5$ Expressed by Chebyshev polynomials of the first kind: $p(x) = b_0 + 0.7628T_1(x) + 0.2485T_2(x) + 0.1400T_3(x) + 0.0204T_4(x) + 0.0319T_5(x)$

C_{CO₂}=0.6:

a _o =17.1295	bo=17.3577	
log ₁₀ A= 7.2492	ln A=16.6919	A= 1.7750E+07

C_{CO₂}=1:

a _o =17.3880	b _o =17.6161	
log ₁₀ A= 7.3614	ln A=16.9504	A= 2.2985E+07

Evaluation 1.4 (evaluation with varying *A* based on 12 experiments) E=200

(i) Wood char

 $p(x) = a_0 + 0.7391x + 0.1234x^2 - 0.5833x^3 + 0.4263x^4 + 1.0931x^5$ Expressed by Chebyshev polynomials of the first kind: $p(x) = b_0 + 0.9849T_1(x) + 0.2748T_2(x) + 0.1958T_3(x) + 0.0533T_4(x) + 0.0683T_5(x)$

C_{CO₂}=0.6, 10°C/min

a ₀ =14.6358	bo=14.8573	
log ₁₀ A= 6.0525	ln A=13.9365	A= 1.1286E+06
C_{CO_2} =0.6, modulated $T(t)$		
a ₀ =14.6579	b₀=14.8795	
log ₁₀ A= 6.0622	ln A=13.9586	A= 1.1539E+06
C_{CO_2} =0.6, CRR <i>T(t)</i>		
a ₀ =14.4060	b₀=14.6276	
log ₁₀ A= 5.9528	ln A=13.7067	A= 8.9693E+05
<i>C_{CO2}</i> =1, 10°C/min		
a ₀ =15.0681	bo=15.2896	
log ₁₀ A= 6.2403	ln A=14.3688	A= 1.7389E+06
<i>C_{CO₂}=1</i> , modulated <i>T(t)</i>		
a _o =15.0959	b₀=15.3175	
log ₁₀ A= 6.2524	ln A=14.3966	A= 1.7880E+06
$C_{CO_2} = 1$, CRR $T(t)$		
- a ₀ =14.8833	bo=15.1048	
log ₁₀ A= 6.1600	ln A=14.1840	A= 1.4455E+06

Empirical models for CO ₂ gasificatio	n Suppor	ting Information	Page S7
(ii) Forest residue char			
$p(x) = a_0 + 0.6019x + 0.336$	$0x^2 - 0.1973x^3 + 0.2$	288x ⁴ +0.7313x ⁵	
Expressed by Chebyshev polynomic	als of the first kind:		
$p(x) = b_0 + 0.9110T_1(x) + 0$.2824T ₂ (x) +0.1792	T₃(x) +0.0286T₄(x) +0.0457T₅(x)	
Caa =0.6 10°C/min			
$2_{02} = 0.0, 10 \text{ C/mm}$	h15 2801		
log ₁₀ A= 6.2818	ln A=14.4644	A= 1.9135E+06	
C_{CO_2} =0.6, modulated $I(t)$			
a ₀ =14.9210	b _o =15.1748		
log ₁₀ A= 6.2321	In A=14.3499	A= 1.7064E+06	
C _{CO2} =0.6, CRR T(t)			
a _o =14.8127	bo=15.0665		
log ₁₀ A= 6.1850	ln A=14.2416	A= 1.5312E+06	
<i>C_{co₂}=1</i> , 10°C/min			
$a_0 = 15.4130$	b ₀ =15.6668		
log ₁₀ A= 6.4458	ln A=14.8419	A= 2.7910E+06	
$C_{co_2}=1$, modulated $T(t)$			
a ₀ =15,3793	bo=15.6331		
log ₁₀ A= 6.4311	ln A=14.8081	A= 2.6983E+06	
$C_{co_2}=1$, CRR $T(t)$			
a ₀ =14,9348	ba=15,1886		
$log_{10}A = 6.2380$	ln A=14.3636	A= 1.7300E+06	

4. Gasification of chars from slow and fast pyrolysis

The experiments belong to this work:

Wang, L.; Li, T.; Várhegyi, G.; Skreiberg, Ø.; Løvås, T. CO₂ Gasification of chars prepared by fast and slow pyrolysis from wood and forest residue. A kinetic study. *Energy Fuels* **2018**, *32*, 588-597 *doi*: <u>10.1021/acs.energyfuels.7b03333</u> <u>Repository</u>

In this section S and R denotes chars that formed from spruce and forest residue, respectively, in the TGA apparatus during the gasification experiments. S1200 and R1200 denotes spruce and forest residue chars prepared by fast pyrolysis. Three heating programs were employed: 10° C/min, modulated *T*(*t*) and constant reaction rate *T*(*t*) (CRR). Figure 4 in the present article illustrates the fit quality belonging to the data presented below. The corresponding *f*(*X*) functions are shown by solid lines in Figure 3 in the article.

Evaluation 2.5 (regular evaluation based on 12 experiments) E=266

(i) Sample S

 $p(x) = 22.0167 + 0.3275x + 0.7014x^{2} - 1.1871x^{3} + 1.1091x^{4} + 0.7033x^{5}$ Expressed by Chebyshev polynomials of the first kind: $p(x) = 22.7833 - 0.1232T_{1}(x) + 0.9052T_{2}(x) - 0.0770T_{3}(x) + 0.1386T_{4}(x) + 0.0440T_{5}(x)$ $\log_{10}A = 10.4159 \qquad \ln A = 23.9834 \qquad A = 2.6053E + 10$

(ii) Sample R

 $p(x) = 22.5157 + 0.1343x + 1.1515x^{2} - 0.8785x^{3} + 0.3517x^{4} + 0.2034x^{5}$ Expressed by Chebyshev polynomials of the first kind: $p(x) = 23.2234 - 0.3974T_{1}(x) + 0.7516T_{2}(x) - 0.1561T_{3}(x) + 0.0440T_{4}(x) + 0.0127T_{5}(x)$ $\log_{10}A = 10.6662 \qquad \ln A = 24.5597 \qquad A = 4.6362E + 10$

(iii) Sample S1200

 $p(x) = 24.7924 + 0.3931x - 0.2766x^{2} - 0.1669x^{3} + 0.4004x^{4} - 0.4314x^{5}$ Expressed by Chebyshev polynomials of the first kind: $p(x) = 24.8043 - 0.0016T_{1}(x) + 0.0619T_{2}(x) - 0.1765T_{3}(x) + 0.0501T_{4}(x) - 0.0270T_{5}(x)$ $\log_{10}A = 10.9101 \qquad \ln A = 25.1214 \qquad A = 8.1298E + 10$

(iv) Sample R1200

 $p(x) = 24.4588 - 0.0591x - 0.1670x^{2} - 0.2720x^{3} + 0.2163x^{4} - 0.7263x^{5}$ Expressed by Chebyshev polynomials of the first kind: $p(x) = 24.4564 - 0.7170T_{1}(x) + 0.0247T_{2}(x) - 0.2949T_{3}(x) + 0.0270T_{4}(x) - 0.0454T_{5}(x)$ $\log_{10}A = 11.1029 \qquad \ln A = 25.5654 \qquad A = 1.2675E + 11$

Evaluation 2.2 (evaluation with varying *A* based on 12 experiments) E=231

(i) Sample S

 $p(x) = a_0 + 0.4729x + 0.6027x^2 - 0.9847x^3 + 1.0490x^4 + 0.7666x^5$ Expressed by Chebyshev polynomials of the first kind: $p(x) = b_0 + 0.2135T_1(x) + 0.8259T_2(x) - 0.0066T_3(x) + 0.1311T_4(x) + 0.0479T_5(x)$

Sample S, 20°C/min

a _o =18.5030	bo=19.1978	
log10A= 8.6424	ln A=19.9000	A= 4.3898E+08
Sample S, modulated <i>T(t)</i>		
a ₀ =18.2435	bo=18.9382	
log10A= 8.5297	ln A=19.6404	A= 3.3863E+08
Sample S, CRR <i>T(t)</i>		
a ₀ =18.0801	bo=18.7749	
log ₁₀ A= 8.4588	ln A=19.4771	A= 2.8759E+08

(ii) Sample R

 $p(x) = a_0 + 0.3127x + 1.0361x^2 - 0.8508x^3 + 0.2763x^4 + 0.4006x^5$ Expressed by Chebyshev polynomials of the first kind: $p(x) = b_0 - 0.0750T_1(x) + 0.6562T_2(x) - 0.0875T_3(x) + 0.0345T_4(x) + 0.0250T_5(x)$

Sample R, 20°C/min

a _o =18.8245	bo=19.4462	
log10A= 8.8051	ln A=20.2744	A= 6.3838E+08
Sample R, modulated <i>T(t)</i>		
a ₀ =18.6629	b _o =19.2845	
log10A= 8.7349	ln A=20.1128	A= 5.4310E+08
Sample R, CRR <i>T(t)</i>		
a _o =18.5699	b₀=19.1915	
log10A= 8.6945	ln A=20.0198	A= 4.9487E+08

Empirical models for CO ₂ gasification	Support	ing Information	Page S10
(iii) Sample S1200			
p(x)= a o +0.5343x -0.2155	x ² -0.2985x ³ +0.2	757x⁴ -0.1036x⁵	
Expressed by Chebyshev polynomials	s of the first kind:		
$p(x) = b_0 + 0.2457T_1(x) + 0.$	0301T ₂ (x) -0.1070	T₃(x) +0.0345T₄(x) -0.0065T₅	(x)
Sample S1200, 20°C/min			
a ₀ =20.8152	b _o =20.8109		
log10A= 9.0087	ln A=20.7433	A= 1.0202E+09	
Sample S1200, modulated T	'(t)		
a ₀ =20.6765	b _o =20.6722		
log10A= 8.9485	ln A=20.6046	A= 8.8808E+08	
Sample S1200, CRR <i>T(t)</i>			
a ₀ =20.5741	b _o =20.5698		
log10A= 8.9040	ln A=20.5022	A= 8.0164E+08	
(iv) Sample R1200			
$p(x) = a_{0} + 0.0760x - 0.1563$	$x^2 = 0.1332x^3 \pm 0.1$	490x ⁴ -0.5654x ⁵	

 $p(x) = a_0 + 0.0760x - 0.1563x^2 - 0.1332x^3 + 0.1490x^4 - 0.5654x^5$ Expressed by Chebyshev polynomials of the first kind: $p(x) = b_0 - 0.3773T_1(x) - 0.0036T_2(x) - 0.2100T_3(x) + 0.0186T_4(x) - 0.0353T_5(x)$

Sample R1200, 20°C/min

a₀=20.4556	b₀=20.4333	
log ₁₀ A= 9.1510	ln A=21.0709	A= 1.4158E+09

Sample R1200, modulated T(t)

a _o =20.3714	bo=20.3491	
log ₁₀ A= 9.1144	ln A=20.9867	A= 1.3014E+09

Sample R1200, CRR T(t)

	bo=20.3116	a _o =20.3339
A= 1.2536E+0	ln A=20.9493	log10A= 9.0981