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Abstract
The so-called compensation effect is well known between the activation energy, E, and the pre-exponential factor, A. The 
present work shows by examples that much higher compensation effects may arise when E and A vary with the reacted frac-
tion. For this purpose, a set of five simulated experiments were constructed by first-order kinetics with E = 200 kJ mol−1 at 
a wide range of heating rates. These data were evaluated by the method of least squares assuming E and A as functions of 
the reacted fraction. Such E functions were found which highly differed from a constant E while described well the evalu-
ated data. They included a linearly increasing E and several parabolic E functions. The observed effects may contribute to 
the contradictory kinetic parameters that were reported in the literature of the isoconversional (“model-free”) studies. It 
was found that the compensation effects between E and A functions can be 8–11 times higher than between E and A values.
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List of Symbols
A/s−1	� Pre-exponential factor
c0, c1,  c2	� Polynomial coefficients in Eq. (3)
E/kJ mol−1	� Activation energy
f(α)	� Function in Eq. (1)
N	� Number of the experiments evalu-

ated together by the method of 
least squares

Mj	� The number of digital points in the 
jth experiment

m	� The mass of the sample normal-
ized by the initial sample mass

p(α)	� Polynomial in Eqs. (9)–(12)
r	� Correlation coefficient
R	� Gas constant 

(8.3143 × 10–3 kJ mol−1 K−1)
dev/%	� The root-mean-square deviation 

between the evaluated and the cal-
culated data expressed as per cent 
of the highest evaluated value

devN/%	� Root mean square of the dev values 
of N experiments

t/s	� Time
T	� Temperature [°C, K]
x	� 2α -1
α	� Conversion (reacted fraction)
β/°C min−1	� Heating rate
(ΔE)E,A / kJ mol−1	� A measure of the compensation 

effect between E and A, as outlined 
in the text

(ΔE)E,Af(α) / kJ mol−1	� A measure of the compensation 
effect between E and Af(α), as 
outlined in the text

Introduction

Hundreds of papers are published yearly that determine the 
activation energy, E as function of the reacted fraction, α, 
by isoconversional evaluation methods [1]. Recently Mura-
vyev and Vyazovkin performed a bibliometric study on the 
works dealing with pyrolysis kinetics [2]. They examined 
the best cited works published in 2021 and found that more 
than half of them used the Flynn-Ozawa-Wall method while 
only around every sixth paper used nonlinear least squares 
curve fitting.
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The isoconversional (“model-free”) methods usually 
assume variable activation energy, E(α), and variable pre-
exponential factor, A(α):

Here f(α) can be any continuous function with positive 
values below α < 1 and zero at α = 1. f(α) can be derived 
from a theory in idealistic cases [3]. However, the samples 
studied by thermal analysis are usually too complex for the 
idealized models. In such cases a kinetic evaluation can pro-
vide information on the A(α)f(α) product in Eq. (1) [3].

Equation (1) is a generalization of a simpler equation 
when E and A do not vary with α:

It is well known that there is a marked compensation 
effect between E and A in Eq. (2) [4] which may hinder 
the precise determination of E and A from thermal analysis 
experiments. Intuitively one can expect higher compensation 
effects in Eq. (1) when infinite numbers of function values in 
E(α) and A(α)f(α) can participate in the compensation. This 
will be the subject of the present work. For this purpose, a 
general definition of the compensation effect was selected 
from the literature which is not based on the linear relation-
ship between E and ln A. According to Holstein et al. “…a 
given set of experimental data can be fitted equally well by 
several pairs of A and E values. This lack of uniqueness in 
the determination of kinetic parameters is called the compen-
sation effect.” [5]. The above cited approach was adopted by 
other authors, too [6–9]. One can generalize this definition 
by replacing the term “pairs of A and E value” as follows: 
a given set of experimental data can be described equally 
well by different sets of model parameters. This appears to 
be a general problem in science; the question is the extent of 
this compensation effect. If this extent is large enough, then 
significantly different model parameters can produce nearly 
identical simulated curves and the experiments do not help 
deciding which of them should be accepted.

Using the above generalized definition, the present paper 
aims at showing by examples that the compensation effect in 
Eq. (1) can be much higher than in Eq. (2). It will be shown 
that significantly different E(α) functions may describe the 
same TGA experiments equally well. The basis will be the 
evaluation of a dataset simulated by Eq. (2) at f(α) = 1 − α. 
In this simple case the compensation effects can be studied 
easily and unambiguously without complicating factors. The 
non-isothermal kinetic studies are based almost always on 
experiments with constant heating rates. Accordingly, this 
way will be followed in the present work, too. Burnham 
emphasized that “Heating rates need to vary at least a tenfold 

(1)d�∕dt = A(�)f (�)exp

(

−
E(�)

RT

)

(2)d�∕dt = Af (�)exp
(

−
E

RT

)

to give accurate kinetic parameters” in the Highlights part 
of his paper in 2014 [10]. In his actual examples the ratio 
of the highest and the lowest heating rates was 16 [10]. Fol-
lowing Burnham’s recommendations, the ratio of the high-
est and the lowest heating rates will be 16 in the present 
work. However, less wide heating range domains are more 
frequent in the literature on non-isothermal kinetics accord-
ingly the effect of narrower heating rate domains will also 
be examined.

The various evaluation methods used in the literature 
will not be discussed here because high quality reviews are 
available on this topics [3, 11]. Besides, the methods of the 
mathematical statistics will not be employed in the paper 
because the experimental errors in the thermal analysis are 
mainly non-statistical [12]. Among others the thermal lag; 
the self-heating effects of the exothermic reactions and the 
effect of a hindered diffusion are non-statistical. Usually, 
the kinetic equations can only approximate the complexity 
of the real processes and the differences between the reality 
and the models also add non-statistical error terms to the 
kinetic evaluations.

The present author has been supporting the view for dec-
ades that the experimental data should always be compared 
to their counterparts calculated from the given kinetic model 
[12, 13]. Such a comparison should be carried out for the 
case of a “model-free” evaluations, too [14–18]. Note that 
the term “model free” is misleading because Eq. (1) itself is 
a model [3]. The method of least squares is a practical tool 
to ensure that that the difference between the evaluated data 
and the solution of Eq. (1) would be as small as possible. 
The author proposed flexible empirical models for the least 
squares evaluations by Eq. (1) four years ago [14]. Since 
then further studies demonstrated the applicability of this 
method [15–18]. This approach will be used in the present 
work, too. Simple, slowly changing E(α) functions will be 
presented in the paper that provide good fit for the data gen-
erated at a constant E by Eq. (2).

The Supplementary Information contains the data, equa-
tions, and formulas for most kinetic evaluations of this work 
so that an interested user could check the results and extend 
them by further calculations.

Methods

In this section, we shall deal with the following topics: (i) 
the simulation of a series of experiments for this study; (ii) 
the construction of simple, slowly changing E(α) functions; 
(iii) a suitable measure for the closeness of the evaluated 
data and their counterparts calculated from Eqs. (1) or (2); 
(iv) and the kinds of compensation effects studied in the 
paper.
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Simulated experiments

A first-order reaction was assumed with E = 200 kJ mol−1 
and A = 1016 s−1. The heating rates were selected by rec-
ommendations found in the literatures: 3–5 runs at dif-
ferent heating rates are needed for the evaluation [3]; a 
wide range of heating rates is needed [10]; and the heat-
ing rates should follow a geometric progression [10, 11]. 
Accordingly TGA experiments were simulated by solving 
Eq. (2) at heating rates of 2, 4, 8, 16 and 32 °C min−1 
with f(α) = 1−α. No solid residue was assumed hence the 
normalized sample mass, m equals 1−α. The data of the 
simulated TGA experiments will be denoted as (1−α)obs 
in the treatment. The evaluations of the (1−α)obs curves 
were carried out from 0.999 till 0.001 in around 1000 time 
points.

The E(α) functions used in the paper

As outlined in the Introduction, the present work aims 
at showing that markedly different E(α) functions can 
approximate equally well the simulated experiments 
described above. Mathematically an endless variety of 
E(α) functions may occur in Eq.  (1). However, pikes 
and other sudden changes would be unrealistic for most 
samples studied by thermal analysis. Hence the treat-
ment was restricted to slowly changing E(α) functions. 
Besides, an overall increasing tendency was also requested 
as α increases because the species with higher E usually 
inclined to decompose/react at higher α values. By the 
term “overall increasing tendency” we mean that a linear 
regression on any E(α) function would result in a correla-
tion coefficient of 0.70 or higher and a markedly increas-
ing straight line. As shown in the last section of the work, 
the increase in this straight line from α = 0 till α = 1 was 
between 64 and 100% of the Emax–Emin distances.

Mathematically the simplest slowly changing, nonlin-
ear functions are the parabolas, hence the compensation 
effects in Eq. (1) are demonstrated by parabolic E(α) func-
tions. As described in earlier publications and their Sup-
porting/Supplementing materials, the employed method 
uses polynomials which are expressed by Chebyshev poly-
nomials of the first kind to facilitate the numerical solu-
tions [14–18]. Accordingly, the parabolic E(α) functions of 
the present study are also rearranged into the form:

here c0, c1, and c2 are coefficients, x is a variable that varies 
in domain [−1,1]

(3)E(�) = c0 + c1T1(x) + c2T2(x)

(4)x = 2�−1

While T1 and T2 are Chebyshev polynomials of the first 
kind:

Note that T1(x) and T2(x) have the same magnitude. They 
vary between −1 and 1 in the x domain [−1,1]. The overall 
increase in E(α), E(1)–E(0) is determined by c1 (due to the 
symmetry of the T2(x) parabola). The Emax–Emin difference 
is determined by c1 and c2 together. The overall increasing 
tendency of the E(α) functions was achieved by constrains

as shown in the last section of this work.

Characterization of the fit quality and the method 
of least squares

The root-mean-square deviation can be a suitable measure 
for the closeness of the experimental and calculated data. 
For compatibility with earlier works back to 1989 [13] we 
express it as percent of the highest observed value, which 
can be replaced by 1 in the present case. Keeping in mind 
that no solid residue was assumed (i.e., m = 1−α) we get

here M is the number of digitized points in the given experi-
ment, and �calc

i
 is the ith value calculated from Eqs. (1) or (2) 

by the methods published earlier [14–18]. The fit quality of 
a series of N experiments can be characterized by the root 
mean square of the dev values calculated for each experi-
ment, devN. In the present work N = 5, 4 or 3.

A good fit quality is searched for each E or E(α) tested in 
the work. For this purpose, the unknown parameters were 
determined so that devN would be as small as possible. This 
was achieved by carrying out the method of least squares 
with the objective function (devN)2.

The compensation effects studied, and the empirical 
models employed

Three types of compensation effects were studied. The first 
was the well-known kinetic compensation effect between 
E and A. In that case the model is Eq. (2) with f(α) = 1–α, 
and the best A values were determined by the method of 
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least squares for a grid of fixed E values, as outlined in the 
treatment.

In the second case it was examined how a given change 
of E can be compensated by changes of the Af(α) prod-
uct in Eq. (2). For this purpose a general model was used 
which can describe a wide variety of f(α) shapes [14–18]:

Here p(α) is a polynomial. The factor (1–α) ensures 
that dα/dt is zero at α = 1 for any polynomial coefficients 
hence the polynomial coefficients can be determined by 
the method of least squares without constraints on their 
domains. Equation (9) can be rearranged into the form of 
Eq. (2) yielding a formula for Af(α):

In the third case of compensation effects a given change 
of function E(α) in Eq. (1) is compensated by changes in 
A(α) and f(α). Here again these factors form an A(α)f(α) 
product in Eq. (1) and the above-mentioned general model 
was used which can approximate a wide variety of A(α)
f(α) functions [14–18]. The corresponding kinetic equa-
tion is

where E(α) is the parabolic function described above. The 
rearrangement of Eq. (11) into the format of Eq. (1) gives

In the present work E(α) is defined by Eq.  (3), as 
described above. The coefficients of the first-order and 
second-order terms in Eq. (3), c1 and c2 were predefined, 

(9)d�∕dt = exp
[

p(�) −
E

RT

]

(1 − �)

(10)Af (�) = ep(�)(1 − �)

(11)d�∕dt = exp

[

p(�) −
E(�)

RT

]

(1 − �)

(12)A(�)f (�) = ep(�)(1 − �)

fixed values during the calculations. All other parameters 
were determined by the method of least squares.

Fifth-order polynomials were used for p(α) in Eqs. (9) 
– (12). Though the employed numerical methods allows the 
use of higher-order polynomials, too [16, 18], the use of 
higher polynomial orders did not result in significantly better 
fit qualities in the present work.

Results and discussions

Different E(α) functions can describe well the five 
simulated experiments

In the first step of the work integer c1 and c2 values were 
selected for Eq. (3). Evaluations were carried out with the 
obtained E(α) functions and the resulting fit qualities were 
surveyed graphically. Around 130 E(α) functions were tried 
in this way. Their dev5 values scattered between 0.21 and 
3.06%. By inspecting the figures of the obtained curve fitting 
results, the dev5 values around 0.83% appeared the highest 
ones that could be regarded as an indicator for a high–quality 
fit. Here the term “high–quality fit” was based on the kinetic 
studies carried out with the author’s contribution since 1989 
[13] to the present [18]. Papers published by other authors 
in the literature were also taken into account; a selection 
is listed in References [19–27]. Nevertheless, the choice 
of other dev5 values was also tested. It turned out that the 
choice of a particular dev5 value only slightly affected the 
ratios of the compensation effects studied in this work. Note 
that the same dev5 values were used to estimate the compen-
sation effects at constant E values and E(α) functions. The 
characteristics of the E(α) functions of this study depend on 
the ratio of the first-order and second-order terms in Eq. (3). 
Coefficient c1 was positive in all cases as described above 
at the conditions defined in Eq. (7). Four E(α) were selected 
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Fig. 1   The E(α) functions employed in the study. (See the text for explanations.)
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for the first part of the work which are shown in Fig. 1a: a 
concave function with c2 = –c1 (E(α) #1), a linear function 
with c2 = 0 (E(α) #2), a moderately convex function with 
c2 = 0.5c1 (E(α) #3), and a markedly convex function with 
c2 = c1 (E(α) #4). Their c1 and c2 coefficients were slightly 
altered from the integer numbers found in the 1st stage 
of the work to change the dev5 values from dev5≈0.83% 
to dev5 = 0.83%. (Except #4 which gave dev5 = 0.83 with 
its original integer coefficients. The last section lists the 
employed c1 and c2 values.)

Figure 2b displays further E(α) functions formed via the 
c1 = c2 equality that will be discussed later in the treatment. 
E(α) #5 and #6 served to test how the choice of dev5 values 
differing from 0.83% affect the ratios of the compensation 
effects studied. E(α) #7 and #8 served to test how the number 
of the evaluated experiments affect the results. They pro-
vided dev4 = 0.83% and dev3 = 0.83% during the evaluation 
of four and three experiments, respectively.

Figure 2 displays the fit qualities belonging to E(α) #1, 
#2, #4 and #5. It may be interesting to note how the shape 
of E(α) influences the differences between the observed and 

calculated values. E(α) #1 is a concave function, in this case 
the differences are more observable at the beginning of the 
plotted curves. The convex E(α) #4 and #5 result in higher 
differences near to the end of the curves.

Comparison of the compensation effects at five 
experiments

Let us start with the compensation effect between E and A 
in Eq. (2). Least squares evaluations by a grid of fixed E 
values showed that the five experiments can be described 
at dev5 = 0.83% with E = 192.4 kJ  mol−1 and E = 208.1 
kJ mol−1. The width of the interval, 15.7 kJ mol−1, is denoted 
by (ΔE)E,A where the subscript indicates the parameters 
compensating each other. Within this interval dev5 ≤ 0.83%.

Next follows the case when a change of E is compen-
sated by a change of the Af(α) product in Eq. (2). Here again 
the evaluation was carried out on a grid of fixed E values. 
It was found that dev5 ≤ 0.83% between E = 190.4 and 
210.6 kJ mol−1. The width of this interval, 20.2 kJ mol−1, 
is denoted by (ΔE)E,Af(α). As expected, (ΔE)E,Af(α) is higher 
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Fig. 2   The fit qualities belonging to E(α) #1, #2, #4 and #5
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than (ΔE)E,A. It is notable that the (ΔE)E,Af(α)/(ΔE)E,A ratio 
is the same value, 1.29 from E(α) #1 till E(α) #6. The expla-
nation of this observation is not known yet; it is left for a 
later work.

The (ΔE)E,A and (ΔE)E,Af(α) values can also be compared 
to the Emax–Emin differences of the E(α) functions. In this 
way the compensation effect in Eq. (1) can be compared to 
the compensation effects of Eq. (2). Table 1 displays these 
ratios, too.

As mentioned in the previous section, E(α) #5 and #6 
served to check how the value of dev5 affects the ratio of the 
compensation effects. For this purpose, such c2 = c1 values 
were searched at which the kinetic evaluation with E(α) #5 
and #6 resulted in dev5 = 0.50% and dev5 = 1.00%, respec-
tively. As expected, (ΔE)E,A and (ΔE)E,Af(α) decreased at 
E(α) #5 and increased at E(α) #6 in comparison with the 
corresponding values of E(α) #4. Nevertheless, the ratios 
indicated in Table 1 only changed slightly. (Emax–Emin)/
(ΔE)E,A was around eight while (Emax–Emin)/(ΔE)E,Af(α) was 
around six for E(α) #4, #5 and #6. The (ΔE)E,Af(α)/(ΔE)E,A 
ratio did not depend at all on the dev5 value, as noted above.

Compensation effects in narrower ranges of heating 
rates

The ratio of the highest and lowest heating rates, βmax/βmin 
was 16 in the previous sections. However, most kinetic 
papers in the literature appear to have lower heating rate 
ratios. A comprehensive review on this topic was out of 
the scope of the present study. As a quick check, the works 
cited in the present paper were examined from this respect. 
βmax/βmin of 16 or higher were found in four of the cited 
works: [10, 11, 19, 25]. βmax/βmin values of 6, 8 or 10 were 
found in four of the cited works: [5, 19, 20, 22]. βmax/βmin 
of four or less were found in seven of the cited works: [6, 7, 
21, 23, 24, 26, 27].

Accordingly, there is a need to study the compensation 
effects at lower βmax/βmin ratios, too. By omitting the first 
simulated experiment from the evaluated series, βmax/βmin 
decreased to 8. When the second simulated experiment 

was also omitted, βmax/βmin became 4. According to the 
recommendations of the ICTAC Kinetics Committee, 3–5 
experiments are needed for the isoconversional methods [3], 
hence N = 4 and N = 3 are suitable values. E(α) functions 
were derived from E(α) #4 by increasing its c2 = c1 coef-
ficients till dev4 = 0.83% was reached at N = 4 (E(α) #7) and 
dev3 = 0.83% was reached at N = 3 (E(α) #8). As Table 1 
shows, their Emax–Emin, (ΔE)E,A and (ΔE)E,Af(α) values are 
considerably higher than those of E(α) #4 showing that the 
compensation effects are higher when the information con-
tent of the experimental series is lower.

As shown in Table  1, the (Emax–Emin)/(ΔE)E,A ratio 
went up to 9 at E(α) #8. The (ΔE)E,Af(α)/(ΔE)E,A ratio also 
increased a bit. However, the (Emax–Emin)/(ΔE)E,Af(α) ratio 
remained around 6 for all E(α) constructed with the c2 = c1 
conditions, from E(α) #4 till E(α) #8. The cause of this 
observation was not investigated in the present work.

The fit qualities belonging to E(α) #7 and 8 are shown 
in Fig. 3. The corresponding E versus α plots are presented 
in Fig. 1b.

More details on the E(α) functions 
and the significance of the results

Eight E(α) functions were introduced and used in the previ-
ous sections. They are shown in Fig. 1. Herewith more data 
is given about their characteristics. Besides, the significance 
of the results is checked by recommendations published in 
the literature in 2020 [28].

As mentioned in the Introduction and in the section 
Methods, an increasing tendency of the E(α) functions was 
requested. For its visualization linear regression was carried 
out on each E(α). Table 2 lists additional characteristics of 
the E(α) functions. The data show that the overall increase, 
E(1)–E(0) is comparable to the Emax–Emin differences 
because their ratio is 0.64 or higher. The slopes given by 
the linear regression are equal to E(1)–E(0), accordingly the 
regression line also corresponds to an E(1)–E(0) change of 
E. This observation is related to the mathematical properties 

Table 1   The ratio of the various 
compensation effects at selected 
E(α) functions

E(α) N devN
%

Emax–Emin
kJ mol−1

(ΔE)E,A
kJ mol−1

(ΔE)E,Af(α)
kJ mol−1

(ΔE)E,Af(α)

(ΔE)E,A

Emax−Emin

(ΔE)E,A

E
max

−E
min

(ΔE)
E,Af (�)

#1 5 0.83 49.3 15.7 20.2 1.29 3.1 2.4
#2 5 0.83 61.2 15.7 20.2 1.29 3.9 3.0
#3 5 0.83 96.3 15.7 20.2 1.29 6.1 4.8
#4 5 0.83 125.0 15.7 20.2 1.29 8.0 6.2
#5 5 0.50 72.8 9.4 12.1 1.29 7.7 6.0
#6 5 1.00 153.4 18.9 24.4 1.29 8.1 6.3
#7 4 0.83 160.0 17.8 25.6 1.44 9.0 6.3
#8 3 0.83 225.0 20.3 35.1 1.73 11.1 6.4



Problems with the determination of activation energy as function of the reacted fraction from…

1 3

of Eq. (3). The correlation coefficient, r is 0.70 or higher. 
Figure 4 graphically shows the increasing tendency and the 
alteration from the linearity when r = 0.70 and (E(1)–E(0))/
(Emax–Emin) = 0.64.

The data in Tables 1 and 2 indicate that the systematic 
experimental errors listed in the Introduction may highly 
alter the results of the evaluations. If they cause an alteration 
of devN≈0.83% from the theoretical TGA curves, then the 
best fitting E(α) may change from a constant 200 kJ mol−1 
to an E(α) varying between 170.6 and 395.6 kJ mol−1 at 
the frequently used βmax/βmin = 4 ratio. The corresponding 
range is [178.3, 338.3] at βmax/βmin = 8 and [182.8, 307.8] 
at βmax/βmin = 16, as the data of E(α) #6 and #4 show. The 
significance of these alterations can be assessed by the rec-
ommendations of the ICTAC Kinetics Committee [28]:

“…variation in Eα is insignificant if the difference 
between the maximum and minimum value of Eα 
is less than 10–20 % of the average Eα value. When 
applying this criterion, one should keep in mind that 
the Eα values typically are subject to larger fluctua-

tions at α<0.1 and α>0.9. Therefore, the constancy (or 
insignificant variability) are best judged by analyzing 
the values within the range α =0.1−0.9”
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α α
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Fig. 3   The fit qualities belonging to E(α) #7 and #8
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Fig. 4   The features of E(α) #8 visualized by linear regression

Table 2   Characteristics of the 
employed E(α) functions

Here the slope belongs to the linear regression of E(α). All E values are given in kJ mol−1 units

E(α) c1 c2 E(0) E(1) Emin Emax Emean
E
max

−E
min

E
mean

E(1)−E(0)

Emax−Emin

Slope
kJ mol−1

r

#1 15.8 −15.8 169.9 201.5 169.9 219.2 206.7 0.24 0.64 31.6 0.70
#2 30.6 0.0 180.7 241.9 180.7 241.9 211.3 0.29 1.00 61.2 1.00
#3 42.8 21.4 200.8 286.4 190.1 286.4 215.1 0.45 0.89 85.6 0.89
#4 40.0 40.0 227.8 307.8 182.8 307.8 214.5 0.58 0.64 80.0 0.70
#5 23.3 23.3 215.9 262.5 189.7 262.5 208.1 0.35 0.64 46.6 0.70
#6 49.1 49.1 234.4 332.6 179.2 332.6 218.1 0.70 0.64 98.2 0.70
#7 51.2 51.2 235.9 338.3 178.3 338.3 218.9 0.73 0.64 102.4 0.70
#8 72.0 72.0 251.6 395.6 170.6 395.6 227.6 0.99 0.64 144.0 0.70
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For this test, the Emin, Emax and Emean values were deter-
mined in the [0.1, 0.9] interval of α, too. These data are 
shown in Table 3. As the last column reveals, E(α) #2, #3, 
… #8 have (Emax–Emin)/Emean ratios between 0.23 and 0.75 
in the [0.1, 0.9] interval of α. Noteworthy is that the linearly 
increasing E (E(α) #2) also proved to be significantly dif-
ferent from a constant E when it was used in an evaluation 
with βmax/βmin = 16.

Conclusions

The compensation effects arising in Eqs. (1) and (2) were 
investigated by numerical examples. The work aimed at find-
ing information on the extent of the compensation effects 
between (i) E and A; (ii) E and Af(α); and (iii) E(α) and A(α)
f(α). For this purpose, a general definition of the compensa-
tion effect was adapted from the literature [5]. According to 
this definition, the term compensation effect means that a 
given set of experimental data can be fitted equally well by 
different sets of kinetic parameters. The root-mean-square 
deviation between the evaluated and the calculated data was 
used as a measure for the term “equally well.” A method 
recommended four years ago [14] was employed to get the 
best fit at a given set of kinetic parameters without assum-
ing predefined models in Eqs. (1) and (2). It was shown that 
highly different E(α) functions can result in good descrip-
tions for a series of 3–5 simulated experiments that were 
generated with a constant E. The extent of the compensation 
effect between E(α) and A(α)f(α) may be 8–11 times higher 
than that between E and A and six times higher than the 
compensation effect between E and Af(α). The treatment was 
restricted to E(α) functions which do not have sharp changes 
and have an increasing tendency. The latter condition can 
be visualized so that a linear regression of the studied E(α) 
functions would result in an increasing straight line with 
correlation coefficient 0.7 or higher. Accordingly, the treat-
ment is not exhausting. The aim of the paper was to show 

by examples that the determination of an E(α) is far from 
being unique and this could be achieved in a restricted range 
of E(α) functions as well. The extent of the observed com-
pensation effects depended on the ratio of the highest and 
lowest heating rates of the evaluated experiments, βmax/βmin. 
Higher βmax/βmin values resulted in lower compensation 
effects. Among others, an E(α) increasing linearly from 
180.7 to 241.9 kJ mol−1 also described well the simulated 
experiments at the highest heating rate ratio of the study, 
βmax/βmin = 16. Higher effects were found with curved E(α) 
functions. The results indicate that relatively small experi-
mental errors may highly change the determined E(α) func-
tions even if the evaluation is based on a true least squares 
procedure and carried out in a wide range of heating rates.
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