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ABSTRACT: The so-called “model-free” or isoconversional way of kinetic modeling was examined. In this field, the available
evaluation methods do not aim at an optimal fit for the experimental data. In the present work, the functions of the
corresponding kinetic equation were approximated by simple versatile formulas, the number of the unknown parameters was
kept on reasonably low levels, and the evaluation aimed at the best fit for the experiments by the least-squares method.
Considerations and methods were tested on 85 thermogravimetric (TGA) experiments, which had been published earlier with
different types of kinetic modeling. The experiments belonged to 16 biomass samples including woody biomass, agricultural
residues, and industrial wastes. The temperature programs comprised constant heating rates, stepwise heating, constant reaction
rate heating, isothermal temperature programs, and a modulated temperature program. The evaluations were based on four to
nine experiments for each sample. The best fit was searched for the mass loss rate curves because they reflect well the
peculiarities of pyrolysis. An empirical model with variable activation energy provided good fit for all experimental data. It
described the experiments of a biomass sample by 11 parameters. Another model with constant E values provided rougher but
still usable approximations for the data. It allows fast numerical solutions that may be helpful in complex modeling tasks. Both
models described the experiments at a variety of temperature programs by a given set of model parameters.

1. INTRODUCTION
The kinetics of biomass pyrolysis is usually based on models
that are built of equations

α α= −t A E RT fd /d exp( / ) ( ) (1)

where α is a reacted fraction (conversion), E is the apparent
activation energy, A is the pre-exponential factor, and f(α) is an
appropriate function. Obviously, more than one such equation
is needed when the model reflects the complexity of biomass
pyrolysis reactions. In such cases, α refers only to a part of the
sample. If distributed activation energy models are employed,
then an infinite number of reactions are assumed with an
infinite number of α conversions.
An entirely different approach is when only one equation is

assumed, with varying E and A

α α α α= −t A f E RTd /d ( ) ( ) exp( ( )/ ) (2)

where A(α), f(α), and E(α) are empirical functions. Obviously,
only the product of A(α) and f(α) can be determined from the
experimental data. More precisely, an empirical [A(α)f(α)]
function can be factored to an A(α) and f(α) part in an infinite
number of ways.
For historical reason, the kinetic evaluations by eq 2 are

frequently called “model-free” methods. This term is
misleading because eq 2 itself is a model.1 It is more precise
to call eq 2 “isoconversional”, which means that the reaction
rate dα/dt is a function of temperature only at any selected α
value and does not depend on the temperature history that led
to a given (α, T) point.1 This definition and eq 2 itself can only
be approximately true for biomass materials because they have
complicated reactions, and the temperature history may affect

the importance of various partial reactions in the overall
decomposition.
The literature of “model-free” or isoconversional evaluations

is huge. About 4000 scientific papers contain the characteristic
terms of these methods in the Web of Science database.2 The
present paper is restricted to the kinetic studies on biomass
pyrolysis, where the isoconversional methods have been
present for nearly 40 years.3 According to Web of Science,
more isoconversional evaluations are reported in the literature
of biomass pyrolysis than all other methods combined. A
recent review and case study deals with the isoconversional
kinetics of lignocellulosic materials.4 Its treatment includes a
concise description of the most important evaluation
techniques emphasizing their advantages and disadvantages
and giving ample references from 1956 until the present.
Equation 2 is usually employed for thermogravimetric

(TGA) and differential scanning calorimetric (DSC) experi-
ments. Nevertheless, it may be employed for any experimental
technique that provides the reacted fraction/conversion of
either the whole sample or a given species, while the
temperature of the sample is measured with an adequate
precision. (Here, the term “adequate” depends obviously on
the sensitivity of the model and the evaluation method to the
experimental errors.)
Several factors led to the writing of the present work. One of

them was that I see questions and problems with this type of
research, as outlined below. Another factor was the high
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number of the publications with isoconversional kinetics; I
wished to contribute to the analysis of their reliability. Besides,
the potential of eq 2 as a relatively simple empirical model is
also interesting.5−8

One of the open questions with the isoconversional
evaluations is the high number of the parameters, which are
derived from a few rather similar TGA curves. Though there
are evaluation methods that can be carried out at any T(t)
temperature programs,1,4 practically all studies in the field are
based on constant heating rate experiments only. The Kinetics
Committee of the International Confederation for Thermal
Analysis and Calorimetry (ICTAC) recommends carrying out
the evaluation at 9−19 fixed α values: “It is recommended to
determine the Eα values in a wide range of α = 0.05−0.95 with
a step not larger than 0.05 and to report the resulting
dependencies of Eα versus α.”1 (Here, Eα is a shorthand for
E(α).) Keeping in mind that there is a [A(α)f(α)] value for
each Eα, the total number of the unknown parameters in a
typical isoconversional evaluation is 9 × 2 to 19 × 2. However,
a higher number of unknown parameters are also determined
in the isoconversional studies. For example, Samuelsson et al.
determined 23 × 2 parameters from 10 constant heating rates
experiments,5 while Carrier et al. presented E − α figures with
41 Eα values using four heating rates.

9 Naqvi et al. presented 39
× 2 parameters in a detailed table that were determined from
three constant heating rate experiments.10

During my work in various teams for 30 years, we realized
that the simultaneous evaluation of linear and nonlinear
temperature programs increases the information of the series of
TGA experiments,11−17 and kinetic models with 12−13
adjustable parameters were sufficient for fitting such series of
experiments by the least-squares method for pyrolysis of a wide
variation of biomass samples.13,14,16,17 (Models assuming
pseudo-components and parallel reactions were employed in
these works.) Moreover, the number of parameters could be
decreased further by assuming partly common kinetic
parameters for different biomass samples.14−17 Here, questions
arise: If 13 parameters are enough for a good fit, then why
should anyone determine 19 × 2 or 39 × 2 parameters? Are
the obtained parameters just redundant or do they serve to
average out the experimental errors in their further processing?
In the latter case, why is a true least-squares evaluation not
chosen to average out the experimental errors via curve fitting?
Another question is the large variation of activation energies

in the literature of isoconversional studies. In the case of
biomass pyrolysis kinetics, Eα values as high as 1070 and 1327
kJ/mol were reported.18,10 Unrealistically low Eα values also
arose, for example, 10−12 kJ/mol.10,19 (We shall turn back to
the meaning of the term “unrealistic E” in the article.) Several
causes may be assumed here, among others: (i) eq 2 is not
suitable for the description of the given pyrolysis process with
realistic Eα values; (ii) the evaluation method is too sensitive to
the experimental errors; (iii) eq 2 itself is ill-conditioned,
meaning that a small error in the initial data can result in much
larger errors in the results, whatever evaluation method is
employed. The present work aims at the clarification of the
above questions.
The available “model-free” evaluation methods appear to be

arbitrary and sensitive to the experimental errors. Here, the
term “arbitrary” means that their elaboration aimed at
relatively simple procedures instead of finding the best fit
between the predicted values and observed data. I think that
there is no need for such simplifications in the 21st century

due to the high development of computers and computing
methods. In other areas of sciences, the usual way of the
evaluation is to find the best fit between the predicted and
observed data by the least-squares method. The use of this
approach for isoconversional evaluations is the main goal in the
present work.

2. SAMPLES AND METHODS
2.1. Samples and Experiments. The considerations of the

present work were tested by evaluating TGA experiments that had
been evaluated earlier by other models and appeared in six
publications in Energy & Fuels.12−17 Eighty-five TGA experiments
were re-evaluated in the present paper. They belonged to 16 biomass
samples, which comprised woody biomasses,12,16,17 agricultural
residues,14,15 and industrial wastes.13 The temperature programs
included constant heating rates, stepwise heating, constant reaction
rate heating (CRR), isothermal temperature programs, and a
modulated temperature program. There were four to nine experi-
ments for each biomass sample. The list of the samples and TGA
experiments belonging to them is given in Section 4.3. Figure 1

displays the temperature programs employed in the work of Tapasvi
et al.16 The corresponding figures for the other samples are given in
the Supporting Information. Four different TGA apparatuses were
involved in the studies. Emphasis was given to ensure a true kinetic
regime by employing small sample masses and considering that very
small sample masses are needed at higher heating rates (because the
peak height of mass loss rate curves is roughly proportional to the
heating rate).12−17

2.2. Evaluation by Least-Squares Method and Character-
ization of Fit Quality. Such values were searched for the unknown
model parameters that minimize the difference between the
experimental (Xobs) and the predicted (Xcalc) data

∑ ∑= [ − ]
= =

of w X t X t( ) ( )
j

N

i

N

j j i j i
1 1

obs calc 2
jexper

(3)

where of is the objective function to be minimized, Nexper is the
number of experiments evaluated together, Nj is the number of ti time
values in experiment j, and wj is the weight factor expressing the
different uncertainties of different experimental curves. In the case of
TGA experiments, eq 3 may aim at an optimal fit either on the
normalized sample mass mobs(t) or on its derivative. The latter is more
characteristic for biomass pyrolysis; we fitted the −dmobs/dt curves in
nearly all of our works since 1989.20 In this case, the objective
function is
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Figure 1. Temperature programs used in the TGA experiments of
Tapasvi et al.16
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where m is the sample mass normalized by the initial dry sample mass.
The division by hj

2 serves to counterbalance the high magnitude
differences. Traditionally, hj is the highest observed value of the given
experiment

= i
k
jjj

y
{
zzzh

m
t

max
d
dj

j

obs

(5)

The normalization by the highest observed values in the least-
squares sum assumes implicitly that the relative precision is roughly
the same for different experiments. This assumption has proved to be
useful in numerous works on nonisothermal kinetics since 1993.21

The obtained fit quality can be characterized separately for each of
the experiments evaluated together. For this purpose, the relative
deviation (reldev, %) will be used. The root-mean-square (rms)
difference between the observed and calculated values is expressed as
percent of peak maximum. For experiment j, we get
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The fit quality for a given group of experiments is characterized by
the root mean square of the corresponding relative deviations. For
example, the root-mean-square reldev on all 85 experiments of this
study is denoted by reldev85.
Section 5 deals with the least-squares curve fitting for other

experimental quantities.
2.3. Computational Methods. Simple but safe numerical

methods were selected similarly to our previous works.11−17,20−22

The experimental temperature values were connected by linear
interpolation, and the kinetic differential equation (eq 2) was solved
by an adaptive stepwise Runge−Kutta method23 for each experiment
in each [ti−1, ti] interval. (The forms of the E(α) and A(α)f(α)
functions considered in this work are shown in Sections 3.1 and 3.2.)
The minimization of the objective function was carried out by a

variant of the Hook−Jeeves method. The Hook−Jeeves method is a
slow but simple and dependable direct search algorithm.24 The
original algorithm was supplemented by a parabolic interpolation to
find the optimal step sizes. The safety and speed of the convergence
were enhanced by simple parameter transformations, which are
outlined after the setup of the model in Section 3.2. The scaling of the
parameters to similar magnitudes may also be helpful in the direct
search method. The Supporting Information contains 32 sets of
model parameters that an interested reader may use in his/her own
calculations as initial values. It is also possible to start the optimization
from the results of a plain first-order kinetic evaluation.
The experimental −dm/dt values were obtained by approximating

the measured m(t) values by smoothing splines.25 The root-mean-
square difference between the original m(t) and smoothing spline was
typically around 0.1 μg. Such a small difference does not introduce
considerable systematic errors into the least-squares kinetic
evaluations.22

Fortran 2003 and C++ programs were used for numerical
calculations and graphics handling, respectively.
2.4. Automation. The present work was based on around 1000

least-squares evaluations of which 556 proved to be useful for the
tables and figures of this article and its Supporting Information.
Sixteen experimental series were evaluated in 34 ways, as described in
Section 4, and a few additional evaluations were needed in Section 5.
Obviously, some automation was needed for so many evaluations.
The calculations were organized by batch files. The user dialogues of
the evaluation programs were recorded in text files, which were read
together with the experimental data by the programs at each
evaluation. The evaluation programs generated several thousands of
graphical and textual output files that were collected and arranged by
small script programs so that they could be surveyed within
reasonable amounts of time.

3. EMPIRICAL FUNCTIONS FOR MODELING

3.1. Formulation. As outlined in Introduction, the E(α)
and A(α)f(α) functions are approximated by simple formulas
so that the resulting empirical model would contain only a
limited number of parameters and the evaluation could be
carried out by the least-squares method. This is the topic of the
present section.
E(α) and A(α)f(α) can be arbitrary functions with positive

values in the domain 0 ≤ α < 1 in eq 2. A(α)f(α) must be zero
at α = 1 because only a zero value ensures mathematically the
termination of the process. To make the fulfillment of this
requirement easier, we shall introduce a (1 − α) factor into
A(α)f(α) and write eq 2 as follows

α α α α= ̃ − −t A E RTd /d ( )(1 ) exp( ( )/ ) (7)

where Ã(α) is A(α)f(α)/(1 − α) when α < 1. The division by
(1 − α) is not possible at the α = 1 point, but Ã(α) can have
any finite value there. Note that the appearance of (1 − α) in
eq 7 does not mean the assumption of a first-order kinetics; it
serves only for a convenient treatment.
Taking the logarithm of Ã(α) and rearranging eq 7, we get

α α α α= − ̃ −t A E RTd /d (1 ) exp(ln ( ) ( )/ ) (8)

When taking a logarithm, one must assume that the argument
does not take zero values. However, this is not a strong
assumption because Ã(α) may have arbitrarily small positive
values. For example, the lowest Ã(α) value in the test
evaluations of this work was around 10−72 at α = 1.
The next step of the work is to introduce straightforward

approximations for ln Ã(α) and E(α). A general and
widespread way for function approximations is the use of
polynomials because they have a simple form, their handling is
easy, and they can approximate a wide range of functions.
Accordingly, polynomials up to fifth order will be used in this
work.

3.2. Simple Parameter Transformations for Safer
Optimization. Elementary mathematical operations will be
given here, which enhance the safety and speed of the
convergence during the minimization of the least-squares sum.
They aim at decreasing the interrelations (compensation
effects) between the parameters in the evaluation process. The
first step is to map the domain of the polynomials from [0,1]
to [−1,1]. For this, variable x is introduced

α= −x 2 1 (9)

The polynomials describing E and ln Ã will be written as
functions of x

α = + + + + +E a a x a x a x a x a x( ) 0 1 2
2

3
3

4
4

5
5

(10)

α̃ = + + + + +A b b x b x b x b x b xln ( ) 0 1 2
2

3
3

4
4

5
5

(11)

An example for the usefulness of this mapping is as follows:
The α4 and α5 values are close to each other in domain [0,1];
hence, their coefficients can compensate each other a bit
during minimization. On the other hand, x4 and x5 differ very
much at negative x values; hence, their coefficients cannot
compensate each other. A further optional step in this
direction is the use of Chebyshev polynomials of the first
kind due to their favorable properties.23 An identical
rearrangement of eqs 10 and 11 yields
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α = ̅ + ̅ + ̅ + ̅ + ̅
+ ̅

E a a T x a T T a T x a T x

a T x

( ) ( ) ( ) ( ) ( )

( )
0 1 1 2 2 3 3 4 4

5 5 (12)

α̃ = ̅ + ̅ + ̅ + ̅ + ̅

+ ̅

A b b T x b T x b T x b T x

b T x

ln ( ) ( ) ( ) ( ) ( )

( )
0 1 1 2 2 3 3 4 4

5 5 (13)

where T1 ... T5 are the Chebyshev polynomials of the first
kind,23 and a ̅ and b̅ are the coefficients to be determined
during minimization of the objective function. Note that the
calculations with the Chebyshev polynomials of the first kind
are fast and easy through their well-known recurrence
relations.23 (The evaluation of the T1 ... T5 polynomials at
any x can be carried out through a few simple program lines.)
The results can be transformed back to the form of eqs 10 and
11 for reports and publications. The models given in the
Supporting Information are presented in both formats.
Another elementary parameter transformation serves to

decrease the interrelation between the pre-exponential factor
and activation energy during minimization.26 At constants A
and E, it can be carried out by minimizing a transformed
variable Z instead of A

= −Z A E RTln / m (14)

where Tm is the arbitrarily chosen fixed temperature some-
where in the middle of the temperature interval.26 This
method can also be employed for Ã(α) and E(α) by
substituting eqs 12 and 13 (or eqs 10 and 11) into the place
of E and ln A in eq 14. Then, the coefficients of the resulting Z
polynomial are determined together with the coefficients of the
E polynomial.
3.3. Scale Factors. The solution of eq 2 yields the

calculated α and dα/dt values. It would be straightforward to
compare them to the experimental α or dα/dt points by the
least-squares method. This topic will be treated in Section 5.
The correct determination of the experimental α(t) values is
problematic because the thermal decomposition of biomass
materials continues at very high temperatures by the slow
carbonization of chars.27 A part of the pyrolysis reactions
overlap more or less with the charring of the residues,
especially when the sample contains a considerable amount of
lignin. Accordingly, αexp can only be determined approx-
imately. We shall turn back to this point in Section 5.
Herewith, a simpler approach is employed: dmcalc/dt is

obtained from dαcalc/dt by multiplication

α=m t c td /d d /dcalc calc (15)

where c is a scale factor to be determined during the
evaluation. c is equal to the amount of volatiles forming from a
unit mass of the sample by the model. Hence, 1 − c is the char
yield predicted by the model.
Three options will be considered for the determination of c:

(1) A separate cj value is assumed for each experiment, and
the cj values are determined together with other model
parameters in the least-squares evaluation. (Disadvant-
age: this approach highly increases the number of
parameters in the model.)

(2) A common c value is assumed for all experiments. c is
determined together with other model parameters in the
least-squares evaluation. (Disadvantage: this is only an
approximation because the char yield 1 − c may depend
on the temperature programs.27 However, this depend-
ence is usually smaller than the baseline uncertainties of
the apparatuses.)

(3) A separate cj value is assumed for each experiment, and
the cj values are approximated by the experimental mass
loss values in the domain of experiments. (Disadvan-
tages: (i) it is only an approximation, and (ii) it cannot
be employed if the temperature programs are terminated
without heating to higher temperatures (like the
isothermal experiments in Figure 1).)

In the present work, each of the above approaches was
tested. The numbers of least-squares evaluations were 224,
224, and 96 for methods (1), (2), and (3), respectively, as
outlined in the next section. The results were roughly the same
at each approach. The author’s preference is method (2). The
figures of the next section and the models and figures in the
Supporting Information were determined in that way,
assuming a common c for all experiments with a given sample.

4. RESULTS AND DISCUSSION
4.1. Effects of Polynomial Order on Results. Experi-

ments belonging to the 16 biomass samples have been
evaluated in different ways. When fifth-order polynomial
approximation was employed for both E and ln Ã, the model
proved to be ill-conditioned. Four of the 16 samples yielded
E(α) curves with negative values around α = 1 in that case, and
two other samples produced E values of 15−17 kJ/mol. To get
rid of such meaningless E values, the calculations were also
carried out with polynomials of lower order. The results are
shown in Table 1. The first two columns show the orders of
the polynomials tested. In each case, all available experiments
were evaluated by the least-squares method (eq 4) for the 16
biomass samples. Both methods (1) and (2) of the previous

Table 1. Evaluations with Different Degrees of Polynomialsa,b

order of polynomials separate cj for each experiment common c value for a sample

E(α) ln Ã(α) reldev85 mean E lowest E highest E reldev85 mean E lowest E highest E

0 5 3.60 188 163 210 3.75 185 168 207
1 5 3.44 190 127 266 3.63 190 130 268
2 5 3.08 179 75 276 3.34 182 91 278
3 5 2.72 184 67 408 2.97 185 63 469
4 5 2.61 172 −600 429 2.84 173 −666 529
5 5 2.55 178 −347 395 2.76 180 −76 408
3 3 4.70 152 −430 235 4.73 152 −430 235
4 4 3.06 158 −736 364 3.08 157 −733 360

aThe experiments for 16 biomass samples were evaluated in different ways. reldev85 is the root-mean-square relative deviation, which was calculated
for the 85 available experimental −dm/dt curves at each type of evaluations. bThe dimensions of E and reldev85 are kJ/mol and %, respectively.
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Figure 2. continued
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section were tested in these evaluations. Accordingly, the eight
rows in Table 1 contain data that were obtained from 8 × 16 ×
2 least-squares evaluations on 85 TGA experiments. The
results were characterized by calculating the root mean square
of the relative deviations for the 85 experiments. The average,
lowest, and highest E values are also displayed in each group.
The activation energies varied in reasonable ranges when

E(α) was approximated by polynomials of zero to third order
and ln Ã(α) was described by fifth-order polynomials. When
the order of polynomials for ln Ã(α) was decreased,
unacceptable results were obtained, as shown in the last two
rows in Table 1.

Obviously, the fit qualities were the best when fifth-order
polynomials were employed for both E(α) and ln Ã(α):
reldev85 values of 2.55 and 2.66% were obtained then. It is
possible to force the values of E(α) into preset limits by
constraints during minimization to avoid the meaningless
activation energies. However, the use of third-order poly-
nomials for E(α) is much simpler than the use of constraints,
and the increase of the reldev85 values was not substantial in
this way, as shown in the data in Table 1. For third-order E(α)
polynomials, the number of parameters is 11 if common c
values are used for the experiments of a biomass sample: four
coefficients for E, and six coefficients for Ã, and a c scale factor.

Figure 2. Illustration of the fit quality when E is constant (blue color), and E is a third-order polynomial of α (red color). Ã(α) was approximated
by fifth-order polynomials. The thick gray lines represent the experimental curves. The temperature programs, when present, are shown by thin,
dashed green lines. Note that the same experimental curves were presented with other type of modeling in the works of (a, b) Meśzaŕos et al.,12 (c,
d) Becidan et al.,13 (e, f) Vaŕhegyi et al.,14 (g, h) Tapasvi et al.,16 and (i, j) Barta-Rajnai et al.17

Figure 3. E(α) and A(α)f(α) functions for five biomasses presented in Figure 2 at (a, c) constant E and at (b, d) E(α) functions approximated by
third-order polynomials. (The color codes and line types are presented in (a); their listing follows the order in Figure 2.)
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The fit quality and curves calculated from this model variant
are shown in Figure 2 and in the figures of the Supporting
Information.
4.2. Approximations with Constant Activation En-

ergies. The first line of data in Table 1 shows evaluations
when E did not depend on α. They provided reasonable
descriptions for the 85 experiments treated in this work. The fit
quality is illustrated in Figure 2 and in further figures in the
Supporting Information. The blue-colored curves belong to
this approximation. If the c scale factors are determined by the
second method in Section 3.3, then the number of model
parameters is 8: one E, six coefficients for Ã, and a c scale
factor. Four to nine experiments were available for each
biomass sample; hence, the number of unknowns for an
experiment varied between 0.9 and 2 in this type of
evaluations. Therefore, the model parameters were based on
an ample amount of experimental information.
This approximation can be recommended for complex

modeling tasks because it can be solved numerically by high-
speed algorithms with relatively easy computer programming.
For this purpose, the obtained A(α)f(α) function can be
factored into a constant A and an f(α) part. The uniqueness of
the factorization can be ensured by normalization so that the
maximum of f(α) would be 1. (This sort of normalization has
also been employed for other empirical f(α) functions.11) In
this way, the kinetic equation has the form of eq 1 and can be
solved numerically by separating the variables

∫∫ α
α

= −
α i

k
jjj

y
{
zzzf

A
E

RT
t

d
( )

exp d

t

0 0 (16)

The left-hand side is usually denoted by g(α). No analytical
approximations are available for the present g(α) or for its
inverse function. However, one can calculate numerically a few
thousand values for this integral and store them together with
the corresponding α and f(α) values in arrays for the modeling
work. (The search in a sorted array is very fast. At each right-

hand-side value arising in the work, the software can search for
the nearest g(α) in the array and α and f(α) values stored with
it.) The right-hand side contains the well-known exponential
integral at constant heating rates or at T(t) programs
consisting of linear sections. In such cases, one of the widely
used approximate formulas can be employed. Otherwise,
quadrature formulas can be recommended.
Compared to the one-step kinetic models of the literature,

the present empirical model variant has an advantage: it can
describe pyrolysis at a wide range of T(t) functions with a
given set of model parameters. Among others, it could
reasonably approximate the TGA experiments from the work
of Tapasvi et al.16 at the T(t) programs shown in Figure 1.
(The Supporting Information contains 10 figures on the fit
quality for these samples.)

4.3. Shape of Employed Empirical Functions and Fit
Quality for 16 Biomass Samples. E versus α dependences
and the shape of the A(α)f(α) functions are shown in Figure 3
for the five biomasses presented in Figure 2. Figure 3a,b
visualizes the spread of the E values. The constant E values
scatter in a narrow interval, while the employment of third-
order polynomials results in a much wider range of E values. It
may be interesting to observe that the E(α) of the two woody
biomasses, denoted by dashed lines in Figure 3, tend to low E
values at high α values, whereas the other three biomasses had
high E values around α = 1. We have no reason to assume a
physical reality behind this behavior; it may be simply two
different ways to describe formally the flat tailing sections of
the −dmexp/dt curves of the biomass materials. The
corresponding A(α)f(α) functions also show different
behaviors for the dashed and solid lines in Figure 3d; this
may be connected to the well-known compensation effect
between A and E: an increase in E induces a rise in A.
Table 2 displays more details on the evaluation of the

biomasses. The results with the third-order E(α) polynomials
were characterized by the mean E values and by the E values at
the end of the domain, Eα=1. Eα=1 < 100 kJ/mol values
appeared mainly at the wood samples. The exceptions are

Table 2. Evaluations of 16 Biomass Samples by Two Selected Model Variantsa,b

E is constant
E is third-order
polynomial of α

source of the
experiments temperature programs biomass reldevN E reldevN Emean Eα=1

Meśzaŕos et al.12 10, 20, and 40 °C/min; stepwise T(t) black locust shoots 3.11 201 2.65 178 71
poplar shoots 3.78 207 3.13 187 68
willow shoots 3.42 192 2.74 179 86

Becidan et al.13 5, 10, and 20 °C/min; CRR T(t); stepwise T(t) brewer spent grains 5.28 206 3.94 237 469
coffee waste 3.76 206 2.65 223 343
medium-density
fiberboard

3.56 179 3.08 167 99

Vaŕhegyi et al.14 4 and 40 °C/min; two stepwise T(t) programs corn stalk 2.99 188 1.83 189 300
rice husk 3.54 181 2.17 198 390
sorghum 2.49 188 2.23 165 63
wheat straw 1.76 188 1.60 188 229

Trninic ́ et al.15 5, 10, and 20 °C/min; stepwise T(t) corncob (Hawaii) 3.09 185 2.44 183 248
corncob (Serbia) 2.21 187 2.17 194 252

Tapasvi et al.16 5, 10, 20, and 40 °C/min; CRR T(t); modulated T(t); stepwise T(t); two
isothermal T(t) programs

birch 5.17 171 3.43 152 71
spruce 3.51 168 3.30 161 139

Barta-Rajnai et
al.17

2.5, 10, and 40 °C/min; 2 stepwise and 3 isothermal T(t) bark of spruce 3.33 184 2.18 207 380
spruce 4.43 174 4.26 186 260

areldevN is the root-mean-square relative deviation of the experimental −dm/dt curves of a given sample. bThe dimensions of E and reldevN are kJ/
mol and %, respectively.
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spruce and its bark in the last two rows. On the other hand, the
sorghum sample also exhibited low Eα=1. These observations
support the view that the isoconversional kinetics provides
only formal approximations for biomass pyrolysis.
The lowest fit quality was obtained for the brewer spent

grains and birch samples at constant E: reldev5 = 5.28% and
reldev9 = 5.17%. Both samples are shown in Figure 2. The
Supporting Information contains further figures on the fit
quality of these samples. As shown in these plots, the fit quality
is also reasonable for these samples.
4.4. Restricting the Evaluations to Constant Heating

Rate Experiments. As mentioned in Introduction, almost all
isoconversional kinetic studies were based only on constant
heating rate experiments. Herewith, we examine this approach
from the aspects of the present work. In Tables 1 and 2, there
was at least one experiment with nonlinear T(t) for each
sample. Table 3 shows the evaluations that were carried out

only on the constant heating rate experiments. Here, three
ways were used for the determination of c factors (as shown in
Section 3.3), while the order of polynomials for E(α) varied
from 0 to 3. The evaluations were based on 46 constant
heating rate experiments that were available for the 16 biomass
samples; hence, Table 3 was based on 3 × 4 × 16 evaluations.
It turned out that model variants with constant E gave better

fit qualities (lower reldev46 values) for the subset of the
constant heating rate experiments than the third-order
polynomials for all available experiments (reldev85) in Table
2. Accordingly, we do not need variable E(α) functions if the
aim of the modeling is to describe only constant heating rate
experiments.
The parameters obtained from the constant heating rate

experiments can provide some rough predictions for the
remaining 39 experiments with nonlinear T(t), as shown in the
corresponding reldev39 values in the table. In this respect, the

prediction power of the constant E model is close to those of
the E(α) model variants.

4.5. Realistic and Unrealistic E Values. As shown in
Table 3, the evaluation of the constant heating rate
experiments resulted in highly negative Eα=1 values when
third-order polynomials were used for E(α), and the c scale
factors were determined by the first and second methods in
Section 3.3. There were no negative E values when the c factors
were approximated by the third method in Section 3.3, and the
model contained only 10 parameters (four coefficients for
E(α) and six coefficients for ln Ã(α)). However, unrealistic E
values also appeared in this case. Positive but unrealistically
low E values were then obtained at 4 of the 16 biomass
samples. The highest E value in this group, 669 kJ/mol, also
appears to be unrealistic. At this point, we should clarify the
term “unrealistic”. One can start from the IUPAC definition of
activation energy: “an empirical parameter characterizing the
exponential temperature dependence of the rate coefficient”.28

Therefore, we may expect that even an empirical model should
give realistic temperature dependences for the reaction rate at
any α value. The activation energy values 19 and 669 kJ/mol in
Table 2 would correspond to rather unusual temperature
dependences at 600 °C: an increase from 600 to 915 °C
doubles only the reaction rate at E = 19 kJ/mol, whereas a step
from 600 to 650 °C increases the reaction rate by a factor of
150 at E = 699 kJ/mol. Such temperature dependences do not
occur in the thermal analysis of biomass samples in the kinetic
regime. Accordingly, one should choose a model variant with
less than 10 parameters if the evaluation is based only on
constant heating rate experiments.
The above observations indicate a particularly strong

compensation effect between E(α) and A(α)f(α) in eq 2. As
mentioned above, E(α) and A(α)f(α) can be arbitrary
functions, which may have any positive values in the domain
0 ≤ α < 1. The test calculations of this work indicated that an
arbitrary A(α)f(α) can compensate even the negative E values
without worsening of the fit quality.

5. LEAST-SQUARES CURVE FITTING FOR αobs AND
dαobs/dt
5.1. Evaluation of αobs Values. The literature of the

“model-free” evaluations is based on parameter determinations
either from αobs values or from αobs and dαobs/dt values.1,3,4

The present section deals with the least-squares evaluation of
these experimental quantities. As mentioned above, the
experimental reacted fraction can only be determined
approximately for biomass samples because a part of the
pyrolysis reactions overlap with the carbonization of the
formed char. An alternative would be the modeling of the
whole thermal decomposition, pyrolysis and char carbonization
together, but the latter process lasts until very high
temperatures.27

The biomass samples from the work of Meśzaŕos et al.12

were selected for test evaluations in this section. The reacted
fraction was approximated as

α ≅
−
−

°

° °
t

m m t

m m
( )

( )obs 150 C
obs obs

150 C
obs

600 C
obs

(17)

Here, the starting point was selected to be 150 °C, which is
after the drying of the sample and before the start of the
thermal decomposition. The selected final point, 600 °C, is a
compromise: the reaction rate is already low there, while the

Table 3. Evaluations of the Constant Heating Rate
Experiments Onlya,b

order of polynomials for E 0 1 2 3

separate ci for each
experiment

fit (reldev46) 2.70 2.56 2.43 2.23
predictions
(reldev39)

5.95 6.12 5.61 5.71

mean E 203 207 190 191
lowest E 172 126 −56 −492
highest E 261 410 478 645

common c for the
experiments of a sample

reldev46 2.77 2.61 2.48 2.27
predictions
(reldev39)

6.29 6.42 6.19 6.13

mean E 203 207 191 192
lowest E 172 139 24 −478
highest E 261 408 478 648

ci were approximated by
mass loss values

reldev46 2.85 2.74 2.56 2.33
predictions
(reldev39)

6.01 6.16 5.99 5.93

mean E 203 207 191 193
lowest E 172 144 82 19
highest E 262 383 411 669

aThe constant heating rate experiments were evaluated in different
ways for the 16 biomass samples. reldev46 is the root-mean-square
relative deviation calculated for all constant heating rate −dmobs/dt
curves. reldev39 characterizes how the obtained models can predict the
39 experiments with nonlinear T(t). bThe dimensions of E, reldev46,
and reldev39 are kJ/mol and %, respectively.
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long, flat, featureless tailing is not overemphasized in the
domain of evaluation (see Figure 2a,b and the figures on these
samples in the Supporting Information). When αobs is
evaluated, the objective function, eq 3, and the formula for
the relative deviation, eq 6, are written for αobs and αcalc.
The results are summarized in Table 4. The evaluation of

the αexp values by constant E and third-order polynomials for

E(α) gave nearly identical fit qualities. The differences in
reldev4 are 0.08 for the black locust and only 0.03 for the other
two samples. These data suggest that there is no need for a
variable E when the investigators are only interested in the
modeling of αobs. The parameters derived from the αobs values
also provide some rough approximations for the dαobs/dt
curves, as shown in Figure 4. There are no substantial
differences between the constant E and third-order E(α)
models from this aspect. Figure 4 illustrates the fit qualities
obtained by the constant E model.
5.2. Evaluation of dαobs/dt Curves. The differentiation of

eq 17 with respect to time yields eq 15 with the c constants by
method (3) in Section 3.3. Accordingly, the results of this
evaluation are similar to the results presented in Section 4.
Figure 4a illustrates that the parameters obtained from the
dαobs/dt curves are also suitable for an approximate description
of the αobs data.

6. CONCLUSIONS

(1) The E(α) and A(α)f(α) functions of the isoconversional
(“model-free”) evaluation were approximated by simple,
versatile formulas. The corresponding parameters were
determined by the least-squares method by finding the
best fit for the experimental data −dmobs/dt or αobs(t).

(2) To provide a sound basis for the work, the evaluations
with various model variants were carried out on 85
thermogravimetric experiments, which had been pub-
lished earlier with different types of kinetic modeling.
The experiments belonged to 16 biomass samples,
including woody biomass, agricultural residues, and
industrial wastes, and were performed at a variety of
linear and nonlinear temperature programs.

(3) Ten kinetic parameters and one or more scale factors
provided good fit with reasonable E values for the
experimental −dm/dt data. In this model variant, E(α)
was approximated by third-order polynomials, and the
prefactor part of the kinetic equation, A(α)f(α), was
approximated by an empirical formula with six adjustable
parameters. When the model contained more parame-
ters, the evaluation proved to be ill-conditioned. Quite
different kinetic parameters could provide similar fit
qualities in such cases, while the E(α) functions
exhibited meaningless E values in the vicinity of α = 1.

(4) A model with constant E values provided acceptable fit
qualities in all tested cases. Here again, A(α)f(α) was
described by an empirical formula with six parameters.
This empirical model allows fast numerical solutions that
may be helpful in complex multidimensional modeling
tasks. Compared to one-step kinetic models of the
literature, the presented empirical model with constant E
has an advantage: it can describe pyrolysis at a wide
range of T(t) functions with a given set of model
parameters. Among others, it could reasonably approx-
imate the TGA experiments performed with the T(t)
programs in Figure 1.

(5) When the evaluation was restricted to the constant
heating rate experiments, model variants with constant E
or with first- and second-order E(α) polynomials
provided good fit qualities. This subset of experiments
could not provide enough experimental information for
a meaningful evaluation by third-order E(α) polyno-
mials.

Table 4. Least-Squares Evaluation of αexp and dαexp/dta,b

sample B P W

constant E; evaluation of αexp E 192 213 197
reldev4 1.05 1.48 1.08

E is third-order polynomial;
evaluation of αexp

mean E 189 211 196
lowest E 161 155 182
highest E 202 227 204
reldev4 0.97 1.45 1.05

constant E; evaluation of dαexp/dt E 197 207 193
reldev4 3.26 3.79 3.39

E is third-order polynomial;
evaluation of dαexp/dt

mean E 179 189 181
lowest E 70 78 89
highest E 216 229 215
reldev4 2.62 3.15 2.74

aThe experiments on young shoots of black locust (B), poplar (P),
and willow (W) were evaluated. bThe dimensions of E and reldev4 are
kJ/mol and %, respectively.

Figure 4. Fit qualities for the 40 °C/min experiment on the willow shoot sample. The constant E model was employed for the least-squares
evaluation of (a) αobs and (b) dαobs/dt. The experimental data are shown by a thick gray line. The best fitting and predicted curves are denoted by
solid and dashed lines, respectively. The magenta and blue colors correspond to the evaluation of αobs and dαobs/dt data.
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(6) When the αobs data were evaluated instead of the −
dmobs/dt curves, model variants with constant E and
third-order E(α) polynomials provided nearly the same
fit qualities. One should note here that the −dmobs/dt
curves are known to be more characteristic to the
peculiarities of biomass pyrolysis than the integral curves
(mobs or αobs). If investigations are restricted to the
integral curves, then the model variant with constant E is
adequate.

(7) The results suggest that the kinetic equations with
variable E and A are ill-conditioned due to the
compensation effect between E(α) and A(α)f(α). The
compensation effects between constant E and A values
are well-known, and the problems are more serious
when E and A are arbitrary functions of α.

(8) Transparent ways are needed to choose reasonable
approximations from the infinite number of solutions
that can give good fit for the experiments. In the present
work, the order of the polynomials for E(α) was
decreased to third order or below, while corresponding
changes in the fit quality were carefully checked.
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■ NOMENCLATURE
α = reacted fraction (dimensionless)
A = pre-exponential factor (s−1)
Ã(α) = A(α)f(α)/(1 − α) at α < 1 (s−1)
a, a,̅ b, b̅ = coefficients in the polynomial approximations of
E(α) and ln Ã(α) (kJ/mol, ln s−1)
E = activation energy (kJ/mol)
f(α) = empirical function expressing the change of the
reactivity as the reactions proceed (dimensionless)
g(α) = the integral of 1/f(α) in eq 16 (dimensionless)

hj = height of an experimental −dm/dt curve (s−1)
m = the mass of the sample normalized by the initial dry
sample mass (dimensionless)
of = objective function minimized in the least-squares
evaluation (dimensionless)
Nexper = number of the experiments evaluated together by
the least-squares method
Nj = number of the evaluated data on the jth experimental
curve
R = gas constant (8.3143 × 10−3 kJ mol−1 K−1)
reldev = the deviation between the observed and calculated
data expressed as percent of the corresponding peak height
(%)
reldev85 = root mean square of the reldev values of 85
experiments (%)
t = time (s)
T = temperature (°C, K)
T1(x) ... T5(x) = Chebyshev polynomials of the first kind
x = 2α − 1 (dimensionless)
i = digitized point on an experimental curve
j = experiment
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