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ABSTRACT 

High quality data smoothing is frequently required in the thermal analysis.  Though the 

mathematical methods for smoothing are well known, the selection of the proper smoothing parameters 

cannot be based on statistical checks alone in thermal analysis.  Many times a compromise must be found 

between the effective removal of the various experimental error components and the distortion of the 

curves by too strong smoothing.  The following topics are discussed from a practical point of view: (i) the 

determination of the derivative thermogravimetric (DTG) curves at low sample masses; (ii) the 

elimination of the noise and flutter from the results of high-pressure TG experiments; (iii) the evaluation 

of the noisy, low intensity mass spectrometric signals arising from the minor volatile products of 

decomposition or oxidation.  The performance of the methods is shown in two applications:  (1) 

Evaluation 0.25 – 0.5 mg mass loss steps in high-pressure thermogravimetry;  (2) Study of NOx formation 

by atmospheric pressure thermogravimetry – mass spectrometry during the temperature programmed 

combustion of 0.4 mg coal char. 
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1. Introduction 

The authors have been working in a research team dealing with the development and application 

of thermoanalytical methods for thirty years.  A fully computerized thermobalance – mass spectrometer 

system was built in 1979 [1] which helped us in the study of a wide range of organic and inorganic 

substances [2-9].  Recently a high-pressure thermobalance was built to measure the thermal 

decomposition and temperature programmed combustion of 1– 5 mg samples at elevated pressures.  

Altogether about 3000 thermogravimetric (TG) and thermogravimetric – mass spectrometric (TG-MS) 

experiments have been recorded by computerized data acquisition in our laboratory since 1980.  Most of 

these data are still stored online together with ca. 10,000 files containing graphics and tables about the 

experiments.  We developed software for the acquisition, handling and processing of these data.  From a 

theoretical point of view, the software is based on well-known mathematical principles.  There are 

however, several practical aspects of the handling of thermal analysis data which cannot be derived from 

mathematical theories.  In this series of papers we wish to summarize those parts of our 30-year 

experience in thermal analysis software development which may help the other researchers of this field. 

The present issue deals with smoothing problems.  The following topics will be discussed: (i) the 

determination of the DTG curves at low sample masses; (ii) the elimination of the noise and flutter from 

the results of high-pressure TG experiments; (iii) the evaluation of the noisy, low intensity mass 

spectrometric signals arising from the volatile minor products of decomposition or oxidation.  In our work 

we found the use of low sample masses extremely important in order to achieve a true kinetic control.  

When processes with high heats of reaction are studied, we frequently have to employ sample masses of 

0.2 - 0.5 mg to avoid self-heating/self cooling phenomena [10, 11].  In the present paper the performance 

of the methods is shown in two applications:  (1) Evaluation 0.25 – 0.5 mg mass loss steps in elevated-

pressure thermogravimetry;  (2) Study of NOx formation by atmospheric pressure thermogravimetry – 

mass spectrometry during the temperature programmed combustion of 0.4 mg coal char.  The sample 

masses employed in these examples were much lower than the usual values in the literature (15 – 1000 

mg in high-pressure thermogravimetry and 5 mg in NOx studies by TG-MS).  We worked near to the 

sensitivity limits of the apparatuses, which required the considerations outlined in this paper. 
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2. Experimental 

2.1. TG-MS apparatus 

A computerized atmospheric pressure thermobalance - mass spectrometer (TG - MS) system was 

built earlier from a Perkin Elmer TGS – 2 thermobalance and a Balzers QMG - 511 mass spectrometer [1, 

2].  Recently a Hiden HAL 3F/PIC mass spectrometer with a fast ion counter was built into the system.  1 

– 128 peak intensities can be selected for recording as functions of time.  The gases formed are led from 

the TG furnace to the ion source through a heated capillary.  The sensitivity of the equipment was checked 

in test experiments by using 0.05 mg samples [12].  The intensity curves are corrected by their baseline 

shift during the experiments.  Intensities m/z 16 and 28 are corrected by taking into account the 

fragmentation of H2O and CO2.  The amount of 13CO+ and C18O+ isotope ions are subtracted from 

intensities m/z 29 and 30. 

2.2. High pressure thermogravimetry 

A Hiden IGA high pressure microbalance system was equipped by an alumina furnace.  The 

temperature of the furnace is programmed by an Eurotherm 906 EPC programmer.  Elevated pressure gas 

(up to 20 bar) is led to the furnace so that the pressure surrounding the furnace was identical with the 

pressure inside.  The pressure is regulated with an Aalborg PSV-1 proportional solenoid valve and an 

Omega CN 76163-PV programmer unit.  The gas flow rate is controlled at the outlet of the system, at 

room temperature and atmospheric pressure by an ASM AFC-260 flow controller. 

2.3. Computers and computer languages 

PC compatible computers were used under Windows 95 operating system.  The programs run as 

“console applications” (in a DOS-window) passing the graphic information to a Windows-application for 

viewing and printing.  The programs were written in languages Fortran 77, Fortran 90 and C++.  An 

IMSL library routine (subroutine DCSSMH in Microsoft’s Fortran PowerStation) was used for spline 

smoothing. 

 

3. Discussion 

3.1. Determination of the DTG curves in atmospheric thermogravimetry 

The experimental errors we wish to filter out contain random and non-random components.  The 

smoothing of the random part of the errors is a well-defined problem which can be solved by well 

established mathematical methods.  One has to estimate the noise level of a given curve by simple 

statistical checks, then find a “smooth” f(t) function approximating the experimental data within the given 

noise level: 
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average smoothness of f(t)  maximum (1) 

  N
 

 wi
2 (f(ti)–Xi)

2  N 2 (2) 

 i=1 

Here N, f(t), t, Xi and  denote the number of data, the smoothing function, the time, the observations, 

and the noise level, respectively.  The role of weight factors wi will be discussed in the next paragraph.  In 

atmospheric pressure thermogravimetry we can use wi1 values.  This type of smoothing was invented by 

Whittaker more then 70 years ago [13], who gave an elegant mathematical formulation for equation (1).  

Later Reinsch [14] developed an effective algorithm for the calculation of cubic spline functions 

satisfying conditions (1) – (2).  This method is now part of every major mathematical program library. 

For the estimation of the random, independent component of the errors we may consider that the 

thermoanalytical curves are usually smooth and can be well approximated by polynomials in short 

intervals.  We can compare the experimental Xi data to Pi values calculated from their neighboring points 

by third order polynomial interpolation: 

Pi = [4 ( Xi-1 + Xi+1 ) – Xi-2 – Xi+2] / 6 (3) 

The (Pi–Xi) differences are characteristic to the random noise.  The variance of formula (3) is 

(34/36)2  0.942.  Hence the variance of (Pi–Xi) is 1.94 2 and the right hand side of condition (2) can 

be estimated by 

 

                           N-2
 

(N-4) 2   (Pi–Xi)
2 / 1.94 (4) 

                           i=3 

The smoothing of the random noise, however, is not enough when low, wide DTG peaks are 

evaluated at low sample masses.  Sometimes we have to deal with the non-statistical noise at higher 

sample masses, too (when the mass loss is more than 1 mg), due to such phenomena as the vibration of 

the building or the accumulation of electrostatic charge on the sample holder.  In such situations the noise 

level in equation (2) should be gradually increased and the resulting graphics on the screen should be 

surveyed.  A compromise should be found between the waves appearing on the DTG or mass 

spectrometric intensity curves and the distortion of the curves by too strong smoothing. 
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Figure 1:  Evaluation 0.25 – 0.5 mg mass loss steps in high-pressure thermogravimetry.  3 mg CaC2O4.H2O was 

decomposed at 6 bar pressure and 10C/min heating rate, in argon flow. Panel (a) shows the smoothing of the TG 

data and the temperature dependence of the si deviations (see the text, below).  Panel (b) displays the resulting 

DTG curve. 

3.2. Smoothing high-pressure experiments 

In high-pressure thermogravimetry, turbulence and fluctuation phenomena hinder the precise 

weight measurement.  The magnitude of these errors depends on the temperature.  Particular care is 

needed to take into account this temperature dependence by suitable weight factors in equation (2).  

According to our experience, the following method gives satisfying results: 

1) We do not employ any hardware filter during the experiment, since a properly selected computer 

smoothing is much more effective. 
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2) We read the weight values approximately every millisecond.  From these data we calculate and store 

the averages and standard deviations in time intervals of a few seconds. 

3) We form weight factors for inequality (2) from the reciprocal of the recorded deviation data.  It turned 

out that the smoothing is more effective if we smooth the recorded deviations by some simple method 

(e.g. moving averages) before forming the weight factors.  The deviation values obtained in this way 

will be denoted as si.  They can be used as an experimental approximation for the temperature 

dependence of the reliability of the experimental data. 

4) Since the si values and the (f(ti)–Xi) differences have the same dimension (mg),  in in inequality (2) 

becomes a dimensionless smoothing parameter.  An initial value of  can easily be found if we 

introduce the wi = 1/si weight factors into the sum of equation (4), too. 

Figure 1 shows the application of the above method for the smoothing and differentiation of a high 

pressure TG curve consisting of 0.25 – 0.5 mg mass-loss steps. 

Fast smoothing of huge data sets 

In thermogravimetry – mass spectrometry we have to evaluate frequently the low intensity mass 

spectrometric signals of minor volatile products.  In case of unfavorable signal/noise ratios a strong 

smoothing has to be employed and a particular care is needed in controlling its systematic distortion.  We 

usually wish to compare the temperature dependence and shape of these curves to other MS curves and to 

the DTG.  (See references [2-3] for examples.)  For such comparisons it is desirable to employ smoothing 

with the same distortion for all curves of a given experiment.  This can easily achieved by any smoothing 

method which is a linear mathematical operation, among others by methods based on least squares 

polynomial approximation.  Suppose that the observed signal is the sum of a theoretical curve, Xtheor(t), 

and various nj(t) noise components: 

Xobs(t) = Xtheor(t) +  nj(t) (5) 

If the Xtheor(t) functions of a group of MS intensity curves differ only in constant multipliers and in nearly 

linear base line shifts, then the distortion caused by a least squares polynomial smoothing will be the 

same, hence the systematic error of the smoothing will not decrease the similarity of the curves.  Another 

requirement is the high computational speed.  The user may wish to try different levels of smoothing for 

the whole data set, display the curves and select the smoothing parameters optimal for the given purpose. 

The Savitzky – Golay filters [15] satisfy the above requirements.  In this method least squares 

polynomial sections are slid through the domain of the curves.  Each polynomial section approximates L 

points.  (The choice of L is discussed below).  The central points of the polynomials are used for the 

smoothing.  (Except of course the end sections of the domain, where more values have to be calculated 
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from the smoothing polynomials.)  This well-known and widely-used method was invented at the 

beginning of the century [13] and it is still being developed nowadays [16]. 

We employ this method with third order polynomials with a user-selected length.  According to 

our experience, the following practical considerations may help the finding of the proper smoothing level 

in thermogravimetry – mass spectrometry: 

a) A third order polynomial can reasonably approximate wave-like noise components which have one 

maximum and one minimum in the given interval.  Hence the method does not filter out the waves 

with wavelength higher than or approximately equal to L.  It becomes very effective for noises with 

wavelength much smaller than L. 

b) L must remain safely below the width of the DTG and MS peaks of the given experiments. 

c) The systematic error of the smoothing can easily be checked in the following way.  We can select a 

well-defined curve with a high signal/noise ratio in the given experiment and survey the height and 

shape of this curve at different L values on the screen.  The graphics may be restricted to the peak(s) 

where the systematic errors of the smoothing are the most apparent. 

 

Figure 2:  Smoothing an NO+ intensity curve measured in the temperature programmed combustion of 0.4 mg coal 

char at 50C/min heating rate. 

The Savitzky – Golay smoothing of mass spectrometric curves is illustrated by Figure 2, which 

shows the intensity of the NO+ ions during the temperature programmed combustion of 0.4 mg coal char 

at 50C/min heating rate.  The char was prepared from a high-volatile bituminous Polish coal at 950C 

[10].  The double peak appearing on Figure 2 is characteristic to the temperature programmed combustion 
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of that char [10].  The L smoothing parameter was chosen to 21 points which corresponds to 60 seconds 

or 50C in this experiment. 
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